cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334312 Triangle read by rows: T(n,k) = Sum_{i=k..n} A191898(i,k).

Original entry on oeis.org

1, 2, -1, 3, 0, -2, 4, -1, -1, -1, 5, 0, 0, 0, -4, 6, -1, -2, -1, -3, 2, 7, 0, -1, 0, -2, 3, -6, 8, -1, 0, -1, -1, 2, -5, -1, 9, 0, -2, 0, 0, 0, -4, 0, -2, 10, -1, -1, -1, -4, -1, -3, -1, -1, 4, 11, 0, 0, 0, -3, 0, -2, 0, 0, 5, -10, 12, -1, -2, -1, -2, 2, -1, -1, -2, 4, -9, 2
Offset: 1

Views

Author

Mats Granvik, Apr 22 2020

Keywords

Comments

A334314(n)/A334313(n) = Sum_{k=1..n} T(n,k)/k.

Examples

			Triangle begins:
1,
2,  -1,
3,   0,  -2,
4,  -1,  -1,  -1,
5,   0,   0,   0,  -4,
6,  -1,  -2,  -1,  -3,   2,
7,   0,  -1,   0,  -2,   3,  -6,
8,  -1,   0,  -1,  -1,   2,  -5,  -1,
9,   0,  -2,   0,   0,   0,  -4,   0,  -2,
10, -1,  -1,  -1,  -4,  -1,  -3,  -1,  -1,   4,
11,  0,   0,   0,  -3,   0,  -2,   0,   0,   5,  -10,
12, -1,  -2,  -1,  -2,   2,  -1,  -1,  -2,   4,   -9,   2,
...
		

Crossrefs

Row sums give A000012.

Programs

  • Mathematica
    nn=14; f[n_] := Total[Divisors[n]*MoebiusMu[Divisors[n]]]; Flatten[Table[Table[Sum[f[GCD[i, k]], {i, k, n}], {k, 1, n}], {n, 1, nn}]]

Formula

Let: f(n) = Sum_{ d divides n } d*mu(d) = A023900(n), then T(n,k) = Sum_{i=k..n} f(gcd(i,k)).
Recurrence 1:
T(n, 1) = n.
T(n, k) = [n >= k]*[k > 1]*(Sum_{j=0..n-k} Sum_{i=j+1..k-1} (T(k-1,i)-T(k,i)) -Sum_{i=n-k+1..n-1} T(i, k)).
Recurrence 2:
T(n, 1) = n.
T(n, k) = [n >= k]*(Sum_{i=n-k+1..k-1}T(k-1,i)-T(k,i)) + [n >= 2*k]*T(n-k,k).

A334314 Numerators of the partial sums of the Möbius transform of the harmonic numbers.

Original entry on oeis.org

1, 3, 7, 35, 21, 259, 1241, 5497, 475, 19367, 7473, 54193, 307727, 485041, 1109501, 9353753, 7870991, 189509941, 1048445929, 4213673063, 96924859, 68325181, 3156755829, 113847868229, 3353128913, 614935296797, 120633624344, 1937548941997, 70096529185, 62887637910847
Offset: 1

Views

Author

Mats Granvik, Apr 22 2020

Keywords

Crossrefs

Denominators are in A334313.
Cf. A001008 (numerators of harmonic numbers), A334312.

Programs

  • Mathematica
    nn = 30; Numerator[Table[Sum[Sum[If[Mod[n, k] == 0, MoebiusMu[n/k]*HarmonicNumber[k], 0], {k, 1, n}], {n, 1, m}], {m, 1, nn}]]
  • PARI
    a(n) = numerator(sum(m=1, n, sumdiv(m, d, moebius(m/d)*sum(i=1, d, 1/i)))); \\ Michel Marcus, Apr 23 2020

Formula

a(n) = numerator of Sum_{m=1..n} Sum_{d|m} H(d)*mu(m/d).
a(n)/A334313(n) = Sum_{k=1..n} A334312(n,k)/k.
Showing 1-2 of 2 results.