A334348 The terms in the Zeckendorf representation of T(n, k) correspond to the terms in common in the Zeckendorf representations of n and of k; square array T(n, k) read by antidiagonals, n, k >= 0.
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 3, 3, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 5, 6, 5, 0
Offset: 0
Examples
Square array begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ---+---------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 0 0 1 0 1 0 0 1 0 0 1 0 2| 0 0 2 0 0 0 0 2 0 0 2 0 0 0 3| 0 0 0 3 3 0 0 0 0 0 0 3 3 0 4| 0 1 0 3 4 0 1 0 0 1 0 3 4 0 5| 0 0 0 0 0 5 5 5 0 0 0 0 0 0 6| 0 1 0 0 1 5 6 5 0 1 0 0 1 0 7| 0 0 2 0 0 5 5 7 0 0 2 0 0 0 8| 0 0 0 0 0 0 0 0 8 8 8 8 8 0 9| 0 1 0 0 1 0 1 0 8 9 8 8 9 0 10| 0 0 2 0 0 0 0 2 8 8 10 8 8 0 11| 0 0 0 3 3 0 0 0 8 8 8 11 11 0 12| 0 1 0 3 4 0 1 0 8 9 8 11 12 0 13| 0 0 0 0 0 0 0 0 0 0 0 0 0 13
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..11475 (antidiagonals 0..150)
- Rémy Sigrist, Colored representation of (x, y) for 0 <= x, y <= 1000 (where the hue is function of T(x, y))
- Rémy Sigrist, PARI program for A334348
- Wikipedia, Zeckendorf's theorem
- Index entries for sequences related to Zeckendorf expansion of n
Programs
-
PARI
See Links section.
Comments