A356325 Array A(n, k), n, k >= 0, read by antidiagonals; the terms in the negaFibonacci representation of A(n, k) are the terms in common in the negaFibonacci representations of n and k.
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 2, 1, 5, 5, 1, 2, 1, 0, 0, 0, 2, 2, 5, 5, 5, 2, 2, 0, 0, 0, 0, 0, 3, 5, 5, 5, 5, 3, 0, 0, 0, 0, 1, 0, 0, 5, 5, 6, 5, 5, 0, 0, 1, 0
Offset: 0
Examples
Array A(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ---+------------------------------------------------ 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 0 1 0 0 1 0 1 0 0 1 0 0 2| 0 0 2 2 0 0 0 2 2 0 0 0 0 0 3| 0 1 2 3 0 0 1 2 3 0 0 1 0 0 4| 0 0 0 0 4 5 5 5 5 -1 0 0 -1 0 5| 0 0 0 0 5 5 5 5 5 0 0 0 0 0 6| 0 1 0 1 5 5 6 5 6 0 0 1 0 0 7| 0 0 2 2 5 5 5 7 7 0 0 0 0 0 8| 0 1 2 3 5 5 6 7 8 0 0 1 0 0 9| 0 0 0 0 -1 0 0 0 0 9 10 10 12 13 10| 0 0 0 0 0 0 0 0 0 10 10 10 13 13 11| 0 1 0 1 0 0 1 0 1 10 10 11 13 13 12| 0 0 0 0 -1 0 0 0 0 12 13 13 12 13 13| 0 0 0 0 0 0 0 0 0 13 13 13 13 13 . For n = 14 and k = 43: - using F(-k) = A039834(k): - 14 = F(-1) + F(-7), - 43 = F(-2) + F(-4) + F(-7) + F(-9), - so A(14, 43) = F(-7) = 13.
Links
- Rémy Sigrist, Colored representation of the array for n, k <= 1000 (white for 0's, shades of blue for negative values, shades of red for positive values)
- Rémy Sigrist, PARI program
- Wikipedia, NegaFibonacci coding
- Index entries for sequences related to Zeckendorf expansion of n
Programs
-
PARI
See Links section.
Comments