cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A356325 Array A(n, k), n, k >= 0, read by antidiagonals; the terms in the negaFibonacci representation of A(n, k) are the terms in common in the negaFibonacci representations of n and k.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 2, 1, 5, 5, 1, 2, 1, 0, 0, 0, 2, 2, 5, 5, 5, 2, 2, 0, 0, 0, 0, 0, 3, 5, 5, 5, 5, 3, 0, 0, 0, 0, 1, 0, 0, 5, 5, 6, 5, 5, 0, 0, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Aug 03 2022

Keywords

Comments

This sequence has similarities with A334348.

Examples

			Array A(n, k) begins:
  n\k|  0  1  2  3   4  5  6  7  8   9  10  11  12  13
  ---+------------------------------------------------
    0|  0  0  0  0   0  0  0  0  0   0   0   0   0   0
    1|  0  1  0  1   0  0  1  0  1   0   0   1   0   0
    2|  0  0  2  2   0  0  0  2  2   0   0   0   0   0
    3|  0  1  2  3   0  0  1  2  3   0   0   1   0   0
    4|  0  0  0  0   4  5  5  5  5  -1   0   0  -1   0
    5|  0  0  0  0   5  5  5  5  5   0   0   0   0   0
    6|  0  1  0  1   5  5  6  5  6   0   0   1   0   0
    7|  0  0  2  2   5  5  5  7  7   0   0   0   0   0
    8|  0  1  2  3   5  5  6  7  8   0   0   1   0   0
    9|  0  0  0  0  -1  0  0  0  0   9  10  10  12  13
   10|  0  0  0  0   0  0  0  0  0  10  10  10  13  13
   11|  0  1  0  1   0  0  1  0  1  10  10  11  13  13
   12|  0  0  0  0  -1  0  0  0  0  12  13  13  12  13
   13|  0  0  0  0   0  0  0  0  0  13  13  13  13  13
.
For n = 14 and k = 43:
- using F(-k) = A039834(k):
- 14 = F(-1) + F(-7),
- 43 = F(-2) + F(-4) + F(-7) + F(-9),
- so A(14, 43) = F(-7) = 13.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, k) = A(k, n).
A(n, n) = n.
A(n, 0) = 0.
A(n, k) = A356327(A215024(n) AND A215024(k)) (where AND denotes the bitwise AND operator).

A356969 A(n, k) is the sum of the terms in common in the dual Zeckendorf representations of n and of k; square array A(n, k) read by antidiagonals, n, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 2, 2, 4, 2, 2, 0, 0, 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 0, 1, 2, 2, 4, 5, 4, 2, 2, 1, 0, 0, 0, 0, 3, 0, 5, 5, 0, 3, 0, 0, 0, 0, 1, 2, 1, 1, 2, 6, 2, 1, 1, 2, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Sep 06 2022

Keywords

Comments

The dual Zeckendorf representation corresponds to the lazy Fibonacci representation.
See A334348 for the sequence dealing with Zeckendorf (or greedy Fibonacci) representations. Unlike A334348, the present sequence is not associative.

Examples

			Square array A(n, k) begins:
  n\k|  0  1  2  3  4  5  6  7  8  9  10  11  12  13
  ---+----------------------------------------------
    0|  0  0  0  0  0  0  0  0  0  0   0   0   0   0
    1|  0  1  0  1  1  0  1  0  1  1   0   1   1   0
    2|  0  0  2  2  0  2  2  2  2  0   2   2   0   2
    3|  0  1  2  3  1  2  3  2  3  1   2   3   1   2
    4|  0  1  0  1  4  3  4  0  1  4   3   4   4   3
    5|  0  0  2  2  3  5  5  2  2  3   5   5   3   5
    6|  0  1  2  3  4  5  6  2  3  4   5   6   4   5
    7|  0  0  2  2  0  2  2  7  7  5   7   7   0   2
    8|  0  1  2  3  1  2  3  7  8  6   7   8   1   2
    9|  0  1  0  1  4  3  4  5  6  9   8   9   4   3
   10|  0  0  2  2  3  5  5  7  7  8  10  10   3   5
   11|  0  1  2  3  4  5  6  7  8  9  10  11   4   5
   12|  0  1  0  1  4  3  4  0  1  4   3   4  12  11
   13|  0  0  2  2  3  5  5  2  2  3   5   5  11  13
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, k) = A022290(A003754(n+1) AND A003754(k+1)) (where AND denotes the bitwise AND operator, A004198).
A(n, k) = A(k, n).
A(n, 0) = 0.
A(n, n) = n.

A361789 A(n, k) is the sum of the distinct terms in the dual Zeckendorf representations of n or of k; square array A(n, k) read by antidiagonals, n, k >= 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 3, 3, 3, 4, 3, 2, 3, 4, 5, 4, 3, 3, 4, 5, 6, 6, 6, 3, 6, 6, 6, 7, 6, 5, 6, 6, 5, 6, 7, 8, 8, 6, 6, 4, 6, 6, 8, 8, 9, 8, 7, 6, 6, 6, 6, 7, 8, 9, 10, 9, 8, 8, 6, 5, 6, 8, 8, 9, 10, 11, 11, 11, 8, 11, 6, 6, 11, 8, 11, 11, 11, 12, 11, 10, 11, 11, 10, 6, 10, 11, 11, 10, 11, 12
Offset: 0

Views

Author

Rémy Sigrist, Mar 24 2023

Keywords

Comments

The dual Zeckendorf representation corresponds to the lazy Fibonacci representation (see A356771 for further details).

Examples

			Array A(n, k) begins:
  n\k |  0   1   2   3   4   5   6   7   8   9  10  11  12  13
  ----+-------------------------------------------------------
    0 |  0   1   2   3   4   5   6   7   8   9  10  11  12  13
    1 |  1   1   3   3   4   6   6   8   8   9  11  11  12  14
    2 |  2   3   2   3   6   5   6   7   8  11  10  11  14  13
    3 |  3   3   3   3   6   6   6   8   8  11  11  11  14  14
    4 |  4   4   6   6   4   6   6  11  11   9  11  11  12  14
    5 |  5   6   5   6   6   5   6  10  11  11  10  11  14  13
    6 |  6   6   6   6   6   6   6  11  11  11  11  11  14  14
    7 |  7   8   7   8  11  10  11   7   8  11  10  11  19  18
    8 |  8   8   8   8  11  11  11   8   8  11  11  11  19  19
    9 |  9   9  11  11   9  11  11  11  11   9  11  11  17  19
   10 | 10  11  10  11  11  10  11  10  11  11  10  11  19  18
   11 | 11  11  11  11  11  11  11  11  11  11  11  11  19  19
   12 | 12  12  14  14  12  14  14  19  19  17  19  19  12  14
   13 | 13  14  13  14  14  13  14  18  19  19  18  19  14  13
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, k) = A022290(A003754(n+1) OR A003754(k+1)) (where OR denotes the bitwise OR operator, A004198).
A(n, k) = A(k, n).
A(n, 0) = n.
A(n, n) = n.
A(A(m, n), k) = A(m, A(n, k)).
A(A(n, k), n) = A(n, k).
A(n, A361756(n, k)) = n.
Showing 1-3 of 3 results.