cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334377 Irregular triangle read by rows: T(n,k) is the number of partitions of k into distinct parts p such that 2 <= p <= n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 3, 2, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 2, 3, 2, 2, 1, 1, 1, 0, 1
Offset: 2

Views

Author

Victor Mishnyakov, Elena Lanina, Apr 25 2020

Keywords

Examples

			Irregular triangle begins:
----------------------------------------------------------
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
----------------------------------------------------------
  2 | 1 0 1
  3 | 1 0 1 1 0 1
  4 | 1 0 1 1 1 1 1 1 0 1
  5 | 1 0 1 1 1 2 1 2 1 2  1  1  1  0  1
  6 | 1 0 1 1 1 2 2 2 2 3  2  3  2  2  2  2  1  1  1  0  1
  ...
For n = 4: T(4,3) = 1 because we have [3], G.f.=1+x^2+x^3+x^4+x^5+x^6+x^7+x^9;
For n = 5: T(5,5) = 2 because we have [5] and [3,2].
G.f. is 1+x^2+x^3+x^4+2x^5+x^6+2x^7+x^8+2x^9+x^10+x^11+x^12+x^14.
		

Crossrefs

Programs

  • Mathematica
    trow[n_] := CoefficientList[Product[(1 + x^i), {i, 2, n}], x]; nmax = 10; Table[trow[n], {n, 2, nmax}] // Flatten

Formula

G.f. for row n: Product_{i=2..n} (1+x^i), n >= 2.