cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Elena Lanina

Elena Lanina's wiki page.

Elena Lanina has authored 2 sequences.

A334377 Irregular triangle read by rows: T(n,k) is the number of partitions of k into distinct parts p such that 2 <= p <= n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 3, 2, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 2, 3, 2, 2, 1, 1, 1, 0, 1
Offset: 2

Author

Victor Mishnyakov, Elena Lanina, Apr 25 2020

Keywords

Examples

			Irregular triangle begins:
----------------------------------------------------------
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
----------------------------------------------------------
  2 | 1 0 1
  3 | 1 0 1 1 0 1
  4 | 1 0 1 1 1 1 1 1 0 1
  5 | 1 0 1 1 1 2 1 2 1 2  1  1  1  0  1
  6 | 1 0 1 1 1 2 2 2 2 3  2  3  2  2  2  2  1  1  1  0  1
  ...
For n = 4: T(4,3) = 1 because we have [3], G.f.=1+x^2+x^3+x^4+x^5+x^6+x^7+x^9;
For n = 5: T(5,5) = 2 because we have [5] and [3,2].
G.f. is 1+x^2+x^3+x^4+2x^5+x^6+2x^7+x^8+2x^9+x^10+x^11+x^12+x^14.
		

Crossrefs

Programs

  • Mathematica
    trow[n_] := CoefficientList[Product[(1 + x^i), {i, 2, n}], x]; nmax = 10; Table[trow[n], {n, 2, nmax}] // Flatten

Formula

G.f. for row n: Product_{i=2..n} (1+x^i), n >= 2.

A334305 a(n) is the number of partitions of n of the form [k,k,b(1),b(2),...], where k>=b(1)>b(2)>...>=2.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 2, 3, 2, 4, 4, 4, 6, 6, 7, 8, 10, 10, 13, 14, 16, 18, 22, 22, 28, 30, 34, 39, 44, 48, 56, 62, 69, 78, 88, 96, 110, 122, 134, 152, 168, 186, 208, 231, 254, 284, 314, 346, 384, 425, 466, 518, 570, 626, 692, 762, 834, 922, 1010
Offset: 0

Author

Victor Mishnyakov, Elena Lanina, Apr 22 2020

Keywords

Comments

a(n)>0 if n>=2k>=4.

Examples

			a(4)=1 because we have [2,2]; a(6)=2 because we have [2,2,2] and [3,3].
G.f.= x^4+2x^6+2x^8+x^9+2x^10+2x^11+3x^12+2x^13+...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(2 k) Product[(1 + x^i), {i, 2, k}], {k, 2, nmax/2}], {x, 0, nmax}], x]
    Flatten[{{0, 0, 0}, Table[PartitionsQ[n + 3] - 2*(-1)^n + 2*Sum[(-1)^k * PartitionsQ[n - k + 3], {k, 1, n - 2}], {n, 3, 70}]}] (* Vaclav Kotesovec, Apr 24 2020 *)

Formula

G.f.: Sum_{k>=2} x^(2k) Product_{i=2..k} (1+x^i).
From Vaclav Kotesovec, Apr 24 2020: (Start)
For n>=3, a(n) + a(n+1) = A087897(n+4).
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (16 * 3^(3/4) * n^(5/4)). (End)