A334377 Irregular triangle read by rows: T(n,k) is the number of partitions of k into distinct parts p such that 2 <= p <= n.
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 3, 2, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 2, 3, 2, 2, 1, 1, 1, 0, 1
Offset: 2
Examples
Irregular triangle begins: ---------------------------------------------------------- n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ---------------------------------------------------------- 2 | 1 0 1 3 | 1 0 1 1 0 1 4 | 1 0 1 1 1 1 1 1 0 1 5 | 1 0 1 1 1 2 1 2 1 2 1 1 1 0 1 6 | 1 0 1 1 1 2 2 2 2 3 2 3 2 2 2 2 1 1 1 0 1 ... For n = 4: T(4,3) = 1 because we have [3], G.f.=1+x^2+x^3+x^4+x^5+x^6+x^7+x^9; For n = 5: T(5,5) = 2 because we have [5] and [3,2]. G.f. is 1+x^2+x^3+x^4+2x^5+x^6+2x^7+x^8+2x^9+x^10+x^11+x^12+x^14.
Programs
-
Mathematica
trow[n_] := CoefficientList[Product[(1 + x^i), {i, 2, n}], x]; nmax = 10; Table[trow[n], {n, 2, nmax}] // Flatten
Formula
G.f. for row n: Product_{i=2..n} (1+x^i), n >= 2.
Comments