A334391 Numbers whose only palindromic divisor is 1.
1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 169, 173, 179, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 299, 307
Offset: 1
Examples
49 = 7^2, the divisor 7 is a palindrome so 49 is not a term. 169 = 13^2, divisors of 169 are {1, 13, 169} and 169 is a term. 391 = 17*23, divisors of 391 are {1,17,23,391} and 391 is a term. 307^2 = 94249 that is palindrome, so 94249 is not a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
notpali:= proc(n) local L; L:= convert(n,base,10); L <> ListTools:-Reverse(L) end proc: filter:= proc(n) option remember; andmap(notpali,numtheory:-divisors(n) minus {1}) end proc: select(filter, [seq(i,i=1..400,2)]); # Robert Israel, Apr 28 2020
-
Mathematica
Select[Range[300], !AnyTrue[Rest @ Divisors[#], PalindromeQ] &] (* Amiram Eldar, Apr 26 2020 *)
-
PARI
ispal(n) = my(d=digits(n)); d == Vecrev(d); isok(n) = fordiv(n, d, if (d>1 && ispal(d), return(0))); return(1); \\ Michel Marcus, Apr 26 2020
-
Python
from sympy.ntheory import divisors, is_palindromic def ok(n): return not any(is_palindromic(d) for d in divisors(n)[1:]) print(list(filter(ok, range(1, 308, 2)))) # Michael S. Branicky, May 08 2021
Comments