cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366989 The number of prime powers p^q dividing n, where p is prime and q is either 1 or prime (A334393 without the first term 1).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 4, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 4, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 4, 3, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2023

Keywords

Comments

First differs from A122810 at n = 48, and from A318322 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := PrimePi[e] + 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, 1 + primepi(f[i, 2]));}

Formula

Additive with a(p^e) = A000720(e) + 1.
a(n) = 1 is and only if n is squarefree (A005117) > 1.
a(n) = A366988(n) + A001221(n).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{p prime} P(p) = 0.67167522222173297323..., and P(s) is the prime zeta function.

A334395 Partial products of A334393.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 6720, 60480, 665280, 8648640, 147026880, 2793510720, 64250746560, 1606268664000, 43369253928000, 1257708363912000, 38988959281272000, 1247646697000704000, 46162927789026048000, 1892680039350067968000, 81385241692052922624000
Offset: 1

Views

Author

Kevin Foote, Apr 26 2020

Keywords

Examples

			a(6) = 1*2*3*4*5*7 = 840.
		

Crossrefs

Programs

  • Mathematica
    Rest @ FoldList[Times, 1, Select[Range[43], Length[(f = FactorInteger[#])] == 1 && ((e = f[[1, 2]]) == 1 || PrimeQ[e]) &]] (* Amiram Eldar, May 11 2020 *)
  • PARI
    isok(n) = if (n==1, return (1)); my(k=isprimepower(n)); (k==1) || isprime(k); \\ A334393
    lista(nn) = {my(v = select(x->isok(x), [1..nn]), p=1); for (n=1, #v, p *= v[n]; print1(p, ", "););} \\ Michel Marcus, May 11 2020

Formula

a(n) = Product_{i=1..n} A334393(i).
Showing 1-2 of 2 results.