cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334417 a(n) is the palindrome equal to A334416(n) divided by its sum of digits.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 7, 4, 3, 4, 7, 5, 4, 6, 7, 8, 9, 7, 55, 22, 11, 55, 22, 55, 22, 55, 55, 33, 55, 55, 55, 55, 44, 55, 55, 55, 55, 505, 88, 66, 202, 262, 77, 121, 88, 99, 181, 151, 121, 101, 88, 505, 424, 181, 121, 151, 181, 131, 343, 202, 181, 141
Offset: 1

Views

Author

Bernard Schott, Apr 29 2020

Keywords

Examples

			A334416(10) = 12 whose sum of digits is 3; 12/3 = 4, so a(10) = 4.
		

Crossrefs

Cf. A334375 (similar for primes).

Programs

  • Mathematica
    Select[#/Plus @@ IntegerDigits[#] & /@ Range[3000], PalindromeQ] (* Amiram Eldar, Apr 29 2020 *)
  • PARI
    isok(m) = iferr(my(d=digits(m/sumdigits(m))); d==Vecrev(d), E, 0);
    apply(x->x/sumdigits(x), select(x->isok(x), [1..3000])) \\ Michel Marcus, Apr 29 2020

Formula

a(n) = A334416(n) / A007953(A334416(n)).

A334533 Numbers k such that k*sod(k) and k/sod(k) are both palindromes, where sod(k) denotes the sum of digits of k (A007953).

Original entry on oeis.org

1, 2, 3, 42, 26664, 2640264, 26400264, 264000264, 2640000264, 26400000264, 264000000264, 2640000000264, 26400000000264, 144689999986441, 154698898896451, 226589999985622, 234779999977432, 243788999887342, 244788898887442, 253698898896352, 254689878986452
Offset: 1

Views

Author

Giovanni Resta, May 05 2020

Keywords

Comments

Intersection of A229549 and A334416.
264*(10^m+1) for m = 2 and m > 3 are terms. Among the first 1000 terms, most terms are palindromes or near-palindromes. The only terms where the first digit is not the same as the last digit among the first 1000 terms are: 42, 7458941369406538 and terms of the form 264*(10^m+1). - Chai Wah Wu, May 12 2020

Examples

			The sum of digits of 26664 is 24 and 26664*24  = 639936 and 26664/24 = 1111 are palindromes, so 26664 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2.7*^6], (s = Plus @@ IntegerDigits[#]; Mod[#, s] == 0 && PalindromeQ[# s] && PalindromeQ[# /s]) &]
  • PARI
    ispal(k) = my(d=digits(k)); d==Vecrev(d);
    isok(k) = my(s=sumdigits(k)); !(k%s) && ispal(k/s) && ispal(k*s); \\ Michel Marcus, May 05 2020

A334822 Palindromes k such that k*sod(k) and k/sod(k) are both palindromes, where sod(k) denotes the sum of digits of k (A007953).

Original entry on oeis.org

1, 2, 3, 144689999986441, 154698898896451, 226589999985622, 234779999977432, 243788999887342, 244788898887442, 253698898896352, 254689878986452, 254788878887452, 254797797797452, 333878999878333, 334878898878433, 335598898895533, 336589878985633, 336688878886633
Offset: 1

Views

Author

Chai Wah Wu, May 12 2020

Keywords

Comments

Intersection of A002113 and A229549 and A334416. Palindromes in A334533.
For the first 10000 terms, most of them have digit sum 91. The only terms a(n) for n <= 10000 for which the digit sum is not 91 are 1, 2, 3 and a(1076) = 426666666666666624. - Chai Wah Wu, May 15 2020

Examples

			35479654545697453 is a palindrome whose sum of digits is 91. 35479654545697453/91 = 389886313688983 and 35479654545697453*91 = 3228648563658468223 which are both palindromes. So 35479654545697453 is a term.
		

Crossrefs

Showing 1-3 of 3 results.