A334420 Numbers m such that sigma(d)/tau(d) is an integer for all divisors d of m.
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145
Offset: 1
Keywords
Examples
Number 15 with divisors 1, 3, 5 and 15 is a term because sigma(1)/tau(1) = 1/1 = 1, sigma(3)/tau(3) = 4/2 = 2, sigma(5)/tau(5) = 6/2 = 3, sigma(15)/tau(15) = 24/4 = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[m: m in [1..10^6] | &+[SumOfDivisors(d) mod NumberOfDivisors(d): d in Divisors(m)] eq 0];
-
Maple
filter:= n -> andmap(d -> numtheory:-sigma(d) mod numtheory:-tau(d)=0, numtheory:-divisors(n)): select(filter, [$1..200]); # Robert Israel, May 01 2020
-
Mathematica
divQ[n_] := Divisible[DivisorSigma[1, n], DivisorSigma[0, n]]; Select[Range[150], AllTrue[Divisors[#], divQ] &] (* Amiram Eldar, Apr 29 2020 *)
-
PARI
isok(m) = fordiv(m, d, if (sigma(d) % numdiv(d), return (0))); return(1); \\ Michel Marcus, Apr 29 2020
Formula
A324500(a(n)) = 1.
Comments