A334433 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally lexicographically.
1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 22, 27, 30, 28, 36, 40, 48, 64, 17, 35, 33, 26, 45, 50, 42, 44, 54, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 34, 75, 63, 70, 66, 52, 81, 90, 100, 84, 88, 108, 120, 112, 144, 160, 192, 256
Offset: 0
Examples
The sequence of terms together with their prime indices begins: 1: {} 32: {1,1,1,1,1} 42: {1,2,4} 2: {1} 13: {6} 44: {1,1,5} 3: {2} 25: {3,3} 54: {1,2,2,2} 4: {1,1} 21: {2,4} 60: {1,1,2,3} 5: {3} 22: {1,5} 56: {1,1,1,4} 6: {1,2} 27: {2,2,2} 72: {1,1,1,2,2} 8: {1,1,1} 30: {1,2,3} 80: {1,1,1,1,3} 7: {4} 28: {1,1,4} 96: {1,1,1,1,1,2} 9: {2,2} 36: {1,1,2,2} 128: {1,1,1,1,1,1,1} 10: {1,3} 40: {1,1,1,3} 19: {8} 12: {1,1,2} 48: {1,1,1,1,2} 49: {4,4} 16: {1,1,1,1} 64: {1,1,1,1,1,1} 55: {3,5} 11: {5} 17: {7} 39: {2,6} 15: {2,3} 35: {3,4} 34: {1,7} 14: {1,4} 33: {2,5} 75: {2,3,3} 18: {1,2,2} 26: {1,6} 63: {2,2,4} 20: {1,1,3} 45: {2,2,3} 70: {1,3,4} 24: {1,1,1,2} 50: {1,3,3} 66: {1,2,5} Triangle begins: 1 2 3 4 5 6 8 7 9 10 12 16 11 15 14 18 20 24 32 13 25 21 22 27 30 28 36 40 48 64 17 35 33 26 45 50 42 44 54 60 56 72 80 96 128 This corresponds to the tetrangle: 0 (1) (2)(11) (3)(21)(111) (4)(22)(31)(211)(1111) (5)(32)(41)(221)(311)(2111)(11111)
Links
- OEIS Wiki, Orderings of partitions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row lengths are A000041.
Compositions under the same order are A124734 (triangle).
The version for reversed (weakly increasing) partitions is A185974.
The constructive version is A334301.
The dual version (sum/length/revlex) is A334438.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Programs
-
Mathematica
Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n]],{n,0,8}]
Comments