A334520 Primes that are the sum of two cubes.
2, 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227
Offset: 1
Keywords
Examples
2 = 1^3 + 1^3. 7 = 2^3 + (-1)^3. 19 = 3^3 + (-2)^3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Andrew Sutherland, Sums of three cubes, Slides of a talk given May 07 2020 on the Number Theory Web.
- Fernando Rodriguez Villegas and Don Zagier, Which primes are sums of two cubes?, CMS Conference Proceedings 15 (1995), pp. 295-306.
Crossrefs
Cf. A002407.
Programs
-
Mathematica
Union[{2},Select[Table[3n^2+3n+1,{n,93}],PrimeQ]] (* Paul F. Marrero Romero, Oct 21 2024 *)
Comments