A002407 Cuban primes: primes which are the difference of two consecutive cubes.
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391
Offset: 1
Examples
a(1) = 7 = 1+3k(k+1) (with k=1) is the smallest prime of this form. a(10^5) = 1792617147127 since this is the 100000th prime of this form.
References
- Allan Joseph Champneys Cunningham, On quasi-Mersennian numbers, Mess. Math., 41 (1912), 119-146.
- Allan Joseph Champneys Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problem 241 pp. 39; 179, Ellipses Paris 2004.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- A. J. C. Cunningham, On quasi-Mersennian numbers, Mess. Math., 41 (1912), 119-146. [Annotated scan of page 144 only]
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
- R. K. Guy, Letter to N. J. A. Sloane, 1987.
- G. L. Honaker, Jr., Prime curio for 127.
- Michael Penn, Nearly cubic primes., YouTube video, 2023.
- Project Euler, Problem 131: Prime cube partnership.
- Eric Weisstein's World of Mathematics, Cuban Prime
- Wikipedia, Cuban prime.
Crossrefs
Programs
-
Magma
[a: n in [0..100] | IsPrime(a) where a is (3*n^2+3*n+1)]; // Vincenzo Librandi, Jan 20 2020
-
Mathematica
lst={}; Do[If[PrimeQ[p=(n+1)^3-n^3], AppendTo[lst, p]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *) Select[Table[3x^2+3x+1,{x,100}],PrimeQ] (* or *) Select[Last[#]- First[#]&/@ Partition[Range[100]^3,2,1],PrimeQ] (* Harvey P. Dale, Mar 10 2012 *) Select[Differences[Range[100]^3],PrimeQ] (* Harvey P. Dale, Jan 19 2020 *)
-
PARI
{a(n)= local(m, c); if(n<1, 0, c=0; m=1; while( c
Michael Somos, Sep 15 2005 */ -
PARI
A002407(n,k=1)=until(isprime(3*k*k+++1) && !n--,);3*k*k--+1 list_A2407(Nmax)=for(k=1,sqrt(Nmax/3),isprime(t=3*k*(k+1)+1) && print1(t",")) \\ M. F. Hasler, Nov 28 2007
-
Python
from sympy import isprime def aupto(limit): alst, k, d = [], 1, 7 while d <= limit: if isprime(d): alst.append(d) k += 1; d = 1+3*k*(k+1) return alst print(aupto(34000)) # Michael S. Branicky, Jul 19 2021
Formula
From Rémi Guillaume, Nov 07 2023: (Start)
a(n) = (3*(2*A002504(n) - 1)^2 + 1)/4.
a(n) = (3*A121259(n)^2 + 1)/4.
a(n) = prime(A145203(n)). (End)
Extensions
More terms from James Sellers, Aug 08 2000
Entry revised by N. J. A. Sloane, Jan 29 2013
Comments