A334534 Numbers k such that (k-p)*(k+p) contains k as a substring, where p > 0 and p = A007954(k) is the product of digits of k.
25, 28, 128, 225, 293, 678, 725, 742, 749, 4225, 4421, 6225, 8926, 72225, 617371, 1985525, 3679518, 4381824, 6816771, 8572645, 9721317, 43872768, 54639413, 758873243, 5895396725, 7796276839, 8881527332, 9458237492, 9594769255, 9949621217, 25214163187, 31987487294
Offset: 1
Examples
25 is a term as p = 2*5 = 10 and (25-10)*(25+10) = 525 which contains '25' as a substring. 8926 is a term as p = 8*9*2*6 = 864 and (8926-864)*(8926+864) = 78926980 which contains '8926' as a substring.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..37 (terms < 3*10^12)
Programs
-
PARI
isokp(dx, d) = {if (!#setintersect(Set(dx), Set(d)), return (0)); for (i=1, #dx - #d + 1, if (vector(#d, k, dx[k+i-1]) == d, return(1)););} isokd(x, d, n) = {if (x==n, return (1)); my(dx = digits(x)); if (#dx < #d, return (0)); isokp(dx, d);} isok(n) = {my(d = digits(n), p = vecprod(d)); if (p>0, isokd((n-p)*(n+p), d, n));} \\ Michel Marcus, May 07 2020
Extensions
More terms from Giovanni Resta, May 07 2020