A334542 Numbers m such that m^2 = p^2 + k^2, with p > 0, where p = A007954(m) = the product of digits of m.
1, 2, 3, 4, 5, 6, 7, 8, 9, 58, 85, 375, 666, 1968, 1998, 3578, 3665, 3891, 4658, 4995, 6675, 7735, 18434, 27475, 28784, 46692, 56763, 58896, 59577, 59949, 76965, 186633, 186673, 795848, 949968, 965667, 1339575, 1587616, 1929798, 2765388, 2989584, 3674195, 4763568, 5762784, 36741656, 58988961, 134369685, 188959392
Offset: 1
Examples
58 is a term as p = 5*8 = 40 and 58^2 = 3364 = 40^2 + 42^2. 3891 is a term as p = 3*8*9*1 = 216 and 3891^2 = 15139881 = 216^2 + 3885^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..140 (terms < 2*10^13)
Crossrefs
Programs
-
PARI
isok(m) = my(p=vecprod(digits(m))); p && issquare(m^2 - p^2); \\ Michel Marcus, May 06 2020