A334550 Triangle read by rows: T(n,k) is the number of binary matrices with n ones, k columns and no zero rows or columns, up to permutations of rows and columns.
1, 1, 2, 1, 2, 3, 1, 5, 5, 5, 1, 5, 12, 9, 7, 1, 9, 23, 29, 17, 11, 1, 9, 39, 62, 57, 28, 15, 1, 14, 63, 147, 154, 110, 47, 22, 1, 14, 102, 278, 409, 329, 194, 73, 30, 1, 20, 150, 568, 991, 1023, 664, 335, 114, 42, 1, 20, 221, 1020, 2334, 2844, 2267, 1243, 549, 170, 56
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 2, 3; 1, 5, 5, 5; 1, 5, 12, 9, 7; 1, 9, 23, 29, 17, 11; 1, 9, 39, 62, 57, 28, 15; 1, 14, 63, 147, 154, 110, 47, 22; ... The T(4,3) = 5 matrices are: [1 0 0] [1 0 0] [1 1 0] [1 1 1] [1 1 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 1] [0 1 0] [0 1 1] [0 0 1] [0 0 1] The T(4,3) = 5 the set multipartitions are: {{1,2}, {3}, {4}}, {{1,2}, {3}, {3}}, {{1,2}, {1}, {3}}, {{1,2}, {1}, {1}}, {{1,2}, {1}, {2}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Programs
-
PARI
\\ See A321609 for definition of M. T(n, k)={M(k, n, n) - M(k-1, n, n)} for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print)
-
PARI
\\ Faster version. permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, n)={prod(j=1, #q, (1+x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))} G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!} A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))} { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) }
Comments