cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334552 Array read by antidiagonals: T(m,n) is the number of fixed polyominoes that have a width of m and height of n and m + n - 1 cells.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 12, 25, 12, 1, 1, 16, 50, 50, 16, 1, 1, 20, 83, 120, 83, 20, 1, 1, 24, 124, 230, 230, 124, 24, 1, 1, 28, 173, 388, 497, 388, 173, 28, 1, 1, 32, 230, 602, 932, 932, 602, 230, 32, 1, 1, 36, 295, 880, 1591, 1924, 1591, 880, 295, 36, 1
Offset: 1

Views

Author

Andrew Howroyd, Jun 06 2020

Keywords

Comments

A polyomino with a width of m and height of n must have at least m + n - 1 cells.

Examples

			Array begins:
=====================================================
m\n | 1  2   3    4    5     6     7     8      9
----+------------------------------------------------
  1 | 1  1   1    1    1     1     1     1      1 ...
  2 | 1  4   8   12   16    20    24    28     32 ...
  3 | 1  8  25   50   83   124   173   230    295 ...
  4 | 1 12  50  120  230   388   602   880   1230 ...
  5 | 1 16  83  230  497   932  1591  2538   3845 ...
  6 | 1 20 124  388  932  1924  3588  6212  10156 ...
  7 | 1 24 173  602 1591  3588  7265 13582  23859 ...
  8 | 1 28 230  880 2538  6212 13582 27288  51290 ...
  9 | 1 32 295 1230 3845 10156 23859 51290 102745 ...
  ...
		

Crossrefs

Columns 2..3 are A008574(n-1), A164754(n+1).
Main diagonal is A334551.
Cf. A292357.

Programs

  • Mathematica
    A334552[m_,n_]:=Max[1,8Binomial[m+n-2,m-1]-3m*n+2m+2n-8];
    Table[A334552[m-n+1,n],{m,15},{n,m}] (* Paolo Xausa, Dec 20 2023 *)
  • PARI
    T(m, n)={if(m==1||n==1, 1, 8*binomial(m+n-2, m-1) - 3*m*n + 2*m + 2*n - 8)} \\ Andrew Howroyd, Dec 30 2020, after Peter J. Taylor

Formula

T(m,n) = 2*binomial(m+n-2, m-1) + 2*(m+n-4) + (m-2)*(n-2)*(m+n-5) + 2*Sum_{i=1..m-2} Sum_{j=1..n-2} ((m-2-i)*(n-2-j)+2)*binomial(i+j,i) for m > 1, n > 1.
T(m,n) = max(1, 8*binomial(m+n-2, m-1) - 3*m*n + 2*m + 2*n - 8). - Peter J. Taylor, Dec 15 2020