A334563 a(n) is the maximum number of 4-cycles possible in an n-vertex planar graph.
0, 0, 0, 0, 3, 9, 16, 24, 33, 43, 54, 66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264, 288, 313, 339, 366, 394, 423, 453, 484, 516, 549, 583, 618, 654, 691, 729, 768, 808, 849, 891, 934, 978, 1023, 1069, 1116, 1164, 1213, 1263, 1314, 1366, 1419, 1473, 1528
Offset: 0
Links
- Debarun Ghosh, Ervin Győri, Oliver Janzer, Addisu Paulos, Nika Salia, Oscar Zamora, The maximum number of induced C_5's in a planar graph, arXiv:2004.01162 [math.CO], 2020.
- S. L. Hakimi and E. F. Schmeichel, On the number of cycles of length k in a maximal planar graph, J. Graph Theory 3 (1979): 69-86.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[0, 0, 0, 0, 3, 9, 16]; [n le 7 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..55]];
-
Mathematica
Join[{0, 0, 0, 0}, Table[(n^2+3n-22)/2, {n, 4, 54}]]
-
PARI
my(x='x + O('x^55)); concat([0, 0, 0, 0], Vec(serlaplace(11 + 9*x + 3*x^2 + x^3/3 + exp(x)*(x^2 + 4*x - 22)/2)))
-
Sage
(x^4*(3 - 2*x^2)/(1 - x)^3).series(x, 55).coefficients(x, sparse=False)
Formula
O.g.f.: x^4*(3 - 2*x^2)/(1 - x)^3.
E.g.f.: 11 + 9*x + 3*x^2 + x^3/3 + exp(x)*(x^2 + 4*x - 22)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 6.
a(n) = (n^2 + 3*n - 22)/2 for n > 3 and 0 otherwise (see Theorem 2 in Hakimi and Schmeichel).
a(n) = a(n-1) + n + 1 for n > 4.
a(n) = A000217(n) + n - 11 for n > 3.
a(n) = A085930(12, n-3) for 3 < n < 16. - Michel Marcus, Jun 01 2020
Comments