cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334573 Partial sums of A334572.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 11, 14, 16, 17, 19, 21, 22, 23, 27, 31, 33, 35, 37, 39, 40, 41, 44, 47, 49, 52, 55, 57, 58, 59, 64, 69, 70, 71, 73, 75, 76, 77, 80, 83, 84, 85, 87, 89, 91, 92, 96, 100, 102, 104, 106, 108, 111, 114, 117, 120, 121, 122, 124, 126, 127, 129, 135, 141
Offset: 2

Views

Author

Michel Marcus, May 06 2020

Keywords

Comments

a(n) = L_infinite(n) = Sum_{m=2..n} d_infinite(m, m-1) as defined in Kolossváry link.

Crossrefs

Programs

  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    b:= n-> max(map(abs, {coeffs(f(n)-f(n-1))})):
    a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+b(n)) end:
    seq(a(n), n=2..80);  # Alois P. Heinz, May 06 2020
  • Mathematica
    f[n_] := Sum[{p, e} = pe; e x^p, {pe, FactorInteger[n]}];
    b[n_] :=  CoefficientList[f[n] - f[n-1], x] // Abs // Max;
    b /@ Range[2, 80] // Accumulate (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
    Accumulate[Max @@@ Partition[Join[{0}, Table[Max[FactorInteger[n][[;; , 2]]], {n, 2, 100}]], 2, 1]] (* Amiram Eldar, Jan 05 2024 *)
  • PARI
    d(n) = {my(f=factor(n/(n-1))[,2]~); vecmax(apply(x->abs(x), f));}
    a(n) = sum(k=2, n, d(k));
    
  • PARI
    first(n)=my(v=vector(n-1),o,t,s); forfactored(k=2,n, t=vecmax(k[2][,2]); v[k[1]-1]=s+=max(o,t); o=t); v \\ Charles R Greathouse IV, Feb 01 2022

Formula

a(n) = Sum_{m=2..n} A334572(n).
a(n) = Sum_{m=2..n} max(A051903(n), A051903(n-1)).
a(n) ~ c * n, where c = 2.2883695... (A334574). - Amiram Eldar, Jan 05 2024