A334573 Partial sums of A334572.
1, 2, 4, 6, 7, 8, 11, 14, 16, 17, 19, 21, 22, 23, 27, 31, 33, 35, 37, 39, 40, 41, 44, 47, 49, 52, 55, 57, 58, 59, 64, 69, 70, 71, 73, 75, 76, 77, 80, 83, 84, 85, 87, 89, 91, 92, 96, 100, 102, 104, 106, 108, 111, 114, 117, 120, 121, 122, 124, 126, 127, 129, 135, 141
Offset: 2
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 2..10000
- István B. Kolossváry and István T. Kolossváry, Distance between natural numbers based on their prime signature, Journal of Number Theory, Vol. 234 (2022), pp. 120-139; arXiv preprint, arXiv:2005.02027 [math.NT], 2020-2021.
Programs
-
Maple
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]): b:= n-> max(map(abs, {coeffs(f(n)-f(n-1))})): a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+b(n)) end: seq(a(n), n=2..80); # Alois P. Heinz, May 06 2020
-
Mathematica
f[n_] := Sum[{p, e} = pe; e x^p, {pe, FactorInteger[n]}]; b[n_] := CoefficientList[f[n] - f[n-1], x] // Abs // Max; b /@ Range[2, 80] // Accumulate (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *) Accumulate[Max @@@ Partition[Join[{0}, Table[Max[FactorInteger[n][[;; , 2]]], {n, 2, 100}]], 2, 1]] (* Amiram Eldar, Jan 05 2024 *)
-
PARI
d(n) = {my(f=factor(n/(n-1))[,2]~); vecmax(apply(x->abs(x), f));} a(n) = sum(k=2, n, d(k));
-
PARI
first(n)=my(v=vector(n-1),o,t,s); forfactored(k=2,n, t=vecmax(k[2][,2]); v[k[1]-1]=s+=max(o,t); o=t); v \\ Charles R Greathouse IV, Feb 01 2022
Formula
a(n) = Sum_{m=2..n} A334572(n).
a(n) ~ c * n, where c = 2.2883695... (A334574). - Amiram Eldar, Jan 05 2024
Comments