A334582 Denominator of Sum_{k=1..n} (-1)^(k+1)/k^3.
1, 8, 216, 1728, 216000, 216000, 74088000, 592704000, 16003008000, 16003008000, 21300003648000, 21300003648000, 46796108014656000, 6685158287808000, 6685158287808000, 53481266302464000, 262753461344005632000, 262753461344005632000
Offset: 1
Examples
The first few fractions are 1, 7/8, 197/216, 1549/1728, 195353/216000, 194353/216000, 66879079/74088000, 533875007/592704000, ... = A136675/A334582.
Links
- Wikipedia, Dirichlet eta function.
Programs
-
Maple
b := proc(n) local k: add((-1)^(k + 1)/k^3, k = 1 .. n): end proc: seq(denom(b(n)), n=1..30);
-
Mathematica
Denominator @ Accumulate[Table[(-1)^(k + 1)/k^3, {k, 1, 18}]] (* Amiram Eldar, May 08 2020 *)
-
PARI
a(n) = denominator(sum(k=1, n, (-1)^(k+1)/k^3)); \\ Michel Marcus, May 07 2020
Extensions
Offset changed to 1 by Georg Fischer, Jul 13 2023
Comments