A334599 a(n) is the largest nonnegative integer m such that m - pi(m) >= pi(m)^(1 + 1/n).
2, 2, 346, 66942, 7087878, 744600720, 85281842598, 10892966758462, 1553240096780862, 246080334487930558, 43047454015229292840, 8262178422446205100776
Offset: 1
Links
- Christian Axler, Estimates for pi(x) for large values of x and Ramanujan's prime counting inequality, Integers 18 (2018), Paper No. A61, 14 pp.
- Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal 45 (2018), no. 1, 227-251.
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), no. 1, 64-94.
- Kim Walisch, primecount, Github, Aug 14 2021.
Extensions
a(8) from Giovanni Resta, May 07 2020
a(9)-a(10) from Daniel Suteu, May 20 2020
a(11)-a(12) from Eduard Roure Perdices, Nov 07 2021
Comments