A334616 Number of 2-colorings of an n X n X n grid, up to rotational symmetry.
2, 23, 5605504, 768614338020786176, 1772303994379887844373479205703254016, 4388012152856549445746584486819723041078276071004502223505850368, 746581580725934736852480760189481426040548499078234470565449222456544381939194522144498021170453413888
Offset: 1
Keywords
Examples
a(2)=23 from: 00 00 00 00 ------------------------------------------ 10 00 00 00 ------------------------------------------ 11 00 10 00 10 01 10 00 00 00 01 00 00 00 00 01 ------------------------------------------ 11 00 11 00 01 10 10 00 00 10 10 00 ------------------------------------------ 11 00 11 00 01 10 11 00 11 10 11 00 10 01 10 01 00 11 10 00 ------------------------------------------ 00 11 00 11 10 01 01 11 11 01 01 11 ------------------------------------------ 00 11 01 11 01 10 01 11 11 11 10 11 11 11 11 10 ------------------------------------------ 01 11 11 11 ------------------------------------------ 11 11 11 11 ------------------------------------------ An example for the 2-coloring of the 3 X 3 X 3 grid can be written as: 110 000 111 100 000 111 100 000 111 This coloring is equivalent to: 111 000 111 001 000 111 000 000 111 because you can get this configuration by rotating the first coloring by 90 degrees. But it is different from: 011 000 111 001 000 111 001 000 111 because reflections are not considered.
Links
- Wikipedia, Cycle index
- Paul Oelkers, Hand written notes and sketches
Formula
a(n) = (1/24)*(2^n^3 + 6*2^((n^3)/4) + 9*2^((n^3)/2) + 8*2^((n^3-n)/3+n)) for n even;
a(n) = (1/24)*(2^n^3 + 6*2^(((n^3)-n)/4+n) + 9*2^(((n^3)-n)/2+n) + 8*2^(((n^3-n)/3)+n)) for n odd.
Extensions
More terms from Stefano Spezia, Sep 09 2020
Comments