A334642 a(n) is the total number of down steps between the first and second up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
0, 3, 9, 32, 139, 669, 3430, 18360, 101403, 573551, 3305445, 19340100, 114579348, 685962172, 4143459504, 25220816752, 154545611355, 952583230899, 5902090839715, 36738469359480, 229636903762035, 1440759023752125, 9070230371741490, 57278432955350880
Offset: 0
Examples
For n = 1, the 2_1-Dyck paths are UDD, DUD. This corresponds to a(1) = 2 + 1 = 3 down steps between the 1st up step and the end of the path. For n = 2, the 2_1-Dyck paths are UUDDDD, UDUDDD, UDDUDD, UDDDUD, DUDDUD, DUDUDD, DUUDDD. In total, there are a(2) = 0 + 1 + 2 + 3 + 2 + 1 + 0 = 9 down steps between the 1st and 2nd up step.
Links
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
Programs
-
Mathematica
a[0] = 0; a[n_] := 2 * Binomial[3*n, n]/(n + 1) - Binomial[3*n + 1, n]/(n + 1) + 4 * Binomial[3*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 24, 0] (* Amiram Eldar, May 09 2020 *)
-
PARI
a(n) = if (n==0, 0, 2*binomial(3*n, n)/(n+1) - binomial(3*n+1, n)/(n+1) + 4*binomial(3*(n-1), n-1)/n - 2*(n==1)); \\ Michel Marcus, May 09 2020
Formula
a(0) = 0 and a(n) = 2*binomial(3*n, n)/(n+1) - binomial(3*n+1, n)/(n+1) + 4*binomial(3*(n-1), n-1)/n - 2*[n=1] for n > 0, where [ ] is the Iverson bracket.
Comments