A334648 a(n) is the total number of down steps between the second and third up steps in all 3_1-Dyck paths of length 4*n.
0, 0, 34, 132, 722, 4638, 32416, 238956, 1827918, 14370595, 115384756, 942115942, 7798224226, 65286060253, 551838621972, 4702955036640, 40366238473530, 348631520142879, 3027590307082804, 26420699531880832, 231571468023697960, 2037650653547067005
Offset: 0
Examples
For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 34 down steps between the 2nd up step and the end of the path.
Links
- Andrei Asinowski, Benjamin Hackl, Sarah J. Selkirk, Down-step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
a[0] = a[1] = 0; a[n_] := Binomial[4*n + 1, n]/(4*n + 1) + 6 * Sum[Binomial[4*j + 2, j] * Binomial[4*(n - j), n - j]/((4*j + 2)*(n - j + 1)), {j, 1, 2}] - 9 * Boole[n == 2]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
SageMath
[binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 9*(n==2) if n > 1 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
Formula
a(0) = a(1) = 0 and a(n) = binomial(4*n+1, n)/(4*n+1) + 6*Sum_{j=1..2} binomial(4*j+2, j)*binomial(4*(n-j), n-j)/((4*j+2)*(n-j+1)) - 9*[n=2] for n > 1, where [ ] is the Iverson bracket.
Comments