cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334651 a(n) is the total number of down steps between the first and second up steps in all 4_1-Dyck paths of length 5*n.

Original entry on oeis.org

0, 7, 25, 155, 1195, 10282, 94591, 910480, 9054965, 92310075, 959473878, 10129715890, 108327387675, 1170975480360, 12773887368040, 140445927510832, 1554748206904325, 17314584431331025, 193849445090545875, 2180550929942519685, 24632294533221865028
Offset: 0

Views

Author

Benjamin Hackl, May 13 2020

Keywords

Comments

A 4_1-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
For n = 1, there is no 2nd up step, a(1) = 7 enumerates the total number of down steps between the 1st up step and the end of the path.

Examples

			For n = 1, the 4_1-Dyck paths are DUDDD, UDDDD. This corresponds to a(1) = 3 + 4 = 7 down steps between the 1st up step and the end of the path.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n + 1) - 3 * Binomial[5*n + 1, n]/(n + 1) + 8*Binomial[5*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [4*binomial(5*n, n)/(n + 1) - 3*binomial(5*n + 1, n)/(n + 1) + 8*binomial(5*(n - 1), n - 1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)]

Formula

a(0) = 0 and a(n) = 4*binomial(5*n, n)/(n+1) - 3*binomial(5*n+1, n)/(n+1) + 8*binomial(5*(n-1), n-1)/n - 2*[n=1] for n > 0, where [ ] is the Iverson bracket.