cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334658 Triangular array read by rows. T(n,k) is the number of length n words on alphabet {0,1} with k maximal runs of 0's having length 2 or more, n>=0, 0<=k<=nearest integer to n/3.

Original entry on oeis.org

1, 2, 3, 1, 5, 3, 8, 8, 13, 18, 1, 21, 38, 5, 34, 76, 18, 55, 147, 53, 1, 89, 277, 139, 7, 144, 512, 336, 32, 233, 932, 766, 116, 1, 377, 1676, 1670, 364, 9, 610, 2984, 3516, 1032, 50, 987, 5269, 7198, 2714, 215, 1, 1597, 9239, 14402, 6734, 785, 11
Offset: 0

Views

Author

Geoffrey Critzer, Jul 25 2020

Keywords

Examples

			1,
2,
3,  1,
5,  3,
8,  8,
13, 18,  1,
21, 38,  5,
34, 76,  18,
55, 147, 53, 1
T(6,2) = 5 because we have: 000100, 001000, 001001, 001100, 100100.
		

Crossrefs

Cf. A000045 (column k=0) A006478 (column k=1).
Row sums give A000079.

Programs

  • Mathematica
    nn = 15; c[z_, u_] := ((1 - z^r)/(1 - z) + u z^r/(1 - z))*1/(1 - z ((1 - z^r)/(1 - z) + u z^r/(1 - z))) /. r -> 2; Map[Select[#, # > 0 &] &, CoefficientList[Series[c[z, u], {z, 0, nn}], {z, u}]] // Grid

Formula

O.g.f.: ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))/(1 - x ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))).
Generally, the o.g.f. for such words having maximal runs of length at least r is: ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))/(1 - x ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))).