A334683 Antidiagonal sums of A068914.
1, 1, 2, 3, 5, 7, 12, 17, 30, 44, 79, 120, 218, 341, 625, 1001, 1848, 3016, 5603, 9283, 17342, 29085, 54606, 92513, 174456, 298111, 564333, 971563, 1845364, 3198130, 6092038, 10621153, 20282471, 35554559, 68042537, 119874494, 229840130, 406794862, 781246800, 1388643835
Offset: 0
Keywords
Crossrefs
Cf. A068914.
Programs
-
Mathematica
T[n_,k_]:=Sum[(-1)^j*Binomial[n,Floor[(n+(k+2)j)/2]],{j,Floor[-n/(k+2)],Ceiling[n/(k+2)]}]; Table[Sum[T[n-k,k],{k,0,n}],{n,0,39}]
-
PARI
T(n,k) = sum(j=floor(-n/(k+2)), ceil(n/(k+2)), (-1)^j*binomial(n,floor((n+(k+2)*j)/2))); \\ A068914 a(n) = sum(k=0, n, T(n-k, k)); \\ Michel Marcus, May 09 2020