cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A334704 Triangle read by rows: T(n,k) (1 <= k <= n) = number of ways to choose three collinear points from an n X k grid of points.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 4, 8, 20, 44, 10, 20, 43, 84, 152, 20, 40, 78, 140, 240, 372, 35, 70, 130, 224, 369, 558, 824, 56, 112, 200, 332, 528, 780, 1132, 1544, 84, 168, 293, 472, 734, 1064, 1519, 2052, 2712, 120, 240, 410, 648, 988, 1408, 1982, 2652, 3480, 4448
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2020

Keywords

Comments

It follows from the definitions that T(n,k) + A334705(n,k) = A334703(n,k) for 1 <= k <= n.

Examples

			Triangle begins:
0,
0, 0,
1, 2, 8,
4, 8, 20, 44,
10, 20, 43, 84, 152,
20, 40, 78, 140, 240, 372,
35, 70, 130, 224, 369, 558, 824,
56, 112, 200, 332, 528, 780, 1132, 1544,
84, 168, 293, 472, 734, 1064, 1519, 2052, 2712,
120, 240, 410, 648, 988, 1408, 1982, 2652, 3480, 4448,
165, 330, 556, 864, 1295, 1826, 2542, 3372, 4393, 5586, 6992,
...
This is the lower half of a symmetric array. The full symmetric array begins:
0, 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ...
0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, ...
1, 2, 8, 20, 43, 78, 130, 200, 293, 410, 556, 732, ...
4, 8, 20, 44, 84, 140, 224, 332, 472, 648, 864, 1120, ...
10, 20, 43, 84, 152, 240, 369, 528, 734, 988, 1295, 1652, ...
20, 40, 78, 140, 240, 372, 558, 780, 1064, 1408, 1826, 2304, ...
35, 70, 130, 224, 369, 558, 824, 1132, 1519, 1982, 2542, 3172, ...
56, 112, 200, 332, 528, 780, 1132, 1544, 2052, 2652, 3372, 4172, ...
84, 168, 293, 472, 734, 1064, 1519, 2052, 2712, 3480, 4393, 5396, ...
120, 240, 410, 648, 988, 1408, 1982, 2652, 3480, 4448, 5586, 6824, ...
165, 330, 556, 864, 1295, 1826, 2542, 3372, 4393, 5586, 6992, 8508, ...
220, 440, 732, 1120, 1652, 2304, 3172, 4172, 5396, 6824, 8508, 10332, ...
...
		

Crossrefs

This is a companion to the triangles A334703 and A334705.
Rows (or columns) 1,2,3,4 of the full array are A000292, A007290, A057566, A334706. The main diagonal is A000938.

Extensions

Rows 6 onwards from Tom Duff. - N. J. A. Sloane, Jun 19 2020

A334708 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four collinear points from an n X k grid.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 5, 2, 0, 2, 5, 15, 10, 3, 3, 10, 15, 35, 30, 15, 10, 15, 30, 35, 70, 70, 45, 29, 29, 45, 70, 70, 126, 140, 105, 72, 64, 72, 105, 140, 126, 210, 252, 210, 157, 129, 129, 157, 210, 252, 210, 330, 420, 378, 302, 248, 234, 248, 302, 378, 420, 330
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020

Examples

			The initial rows of the array are:
0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, ...
0, 0, 0, 2, 10, 30, 70, 140, 252, 420, 660, 990, ...
0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, ...
1, 2, 3, 10, 29, 72, 157, 302, 531, 874, 1361, 2028, ...
5, 10, 15, 29, 64, 129, 248, 442, 747, 1196, 1825, 2679, ...
15, 30, 45, 72, 129, 234, 405, 666, 1065, 1638, 2439, 3510, ...
35, 70, 105, 157, 248, 405, 660, 1020, 1545, 2276, 3283, 4605, ...
70, 140, 210, 302, 442, 666, 1020, 1524, 2220, 3154, 4412, 6030, ...
126, 252, 378, 531, 747, 1065, 1545, 2220, 3156, 4362, 5940, 7923, ...
210, 420, 630, 874, 1196, 1638, 2276, 3154, 4362, 5928, 7914, 10350, ...
...
The initial antidiagonals are:
0
0, 0
0, 0, 0
1, 0, 0, 1
5, 2, 0, 2, 5
15, 10, 3, 3, 10, 15
35, 30, 15, 10, 15, 30, 35
70, 70, 45, 29, 29, 45, 70, 70
126, 140, 105, 72, 64, 72, 105, 140, 126
210, 252, 210, 157, 129, 129, 157, 210, 252, 210
330, 420, 378, 302, 248, 234, 248, 302, 378, 420, 330
...
		

Crossrefs

The main diagonal is A178256.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.

A334709 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that three of them form a triangle of nonzero area and the extra point is strictly inside the triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 48, 48, 0, 0, 0, 0, 144, 240, 144, 0, 0, 0, 0, 348, 716, 716, 348, 0, 0, 0, 0, 700, 1712, 2100, 1712, 700, 0, 0, 0, 0, 1280, 3404, 4984, 4984, 3404, 1280, 0, 0, 0, 0, 2144, 6176, 9900, 11604, 9900, 6176, 2144, 0, 0, 0, 0, 3400, 10336, 17936, 22936, 22936, 17936, 10336, 3400, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020

Examples

			The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 8, 48, 144, 348, 700, 1280, 2144, 3400, 5120, 7440, ...
0, 0, 48, 240, 716, 1712, 3404, 6176, 10336, 16288, 24480, 35504, ...
0, 0, 144, 716, 2100, 4984, 9900, 17936, 29924, 47080, 70700, 102460, ...
0, 0, 348, 1712, 4984, 11604, 22936, 41372, 68844, 108132, 161964, 234228, ...
0, 0, 700, 3404, 9900, 22936, 45184, 81320, 135192, 212152, 317492, 458812, ...
0, 0, 1280, 6176, 17936, 41372, 81320, 145648, 241544, 378400, 565636, 816520, ...
0, 0, 2144, 10336, 29924, 68844, 135192, 241544, 399656, 625232, 933808, 1346928, ...
0, 0, 3400, 16288, 47080, 108132, 212152, 378400, 625232, 976552, 1457172, 2100112, ...
...
The initial antidiagonals are:
0,
0, 0,
0, 0, 0,
0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 48, 48, 0, 0,
0, 0, 144, 240, 144, 0, 0,
0, 0, 348, 716, 716, 348, 0, 0,
0, 0, 700, 1712, 2100, 1712, 700, 0, 0,
0, 0, 1280, 3404, 4984, 4984, 3404, 1280, 0, 0,
0, 0, 2144, 6176, 9900, 11604, 9900, 6176, 2144, 0, 0,
0, 0, 3400, 10336, 17936, 22936, 22936, 17936, 10336, 3400, 0, 0,
...
		

Crossrefs

The main diagonal is A334712.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.

A334710 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that three of them form a triangle of nonzero area and the extra point is on one of the edges of the triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 32, 48, 32, 0, 0, 100, 168, 168, 100, 0, 0, 240, 456, 532, 456, 240, 0, 0, 490, 990, 1312, 1312, 990, 490, 0, 0, 896, 1920, 2652, 3088, 2652, 1920, 896, 0, 0, 1512, 3360, 4972, 5964, 5964, 4972, 3360, 1512, 0, 0, 2400, 5520, 8420, 10816, 11340, 10816, 8420, 5520, 2400, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020

Examples

			The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 6, 32, 100, 240, 490, 896, 1512, 2400, 3630, 5280, ...
0, 6, 48, 168, 456, 990, 1920, 3360, 5520, 8550, 12720, 18216, ...
0, 32, 168, 532, 1312, 2652, 4972, 8420, 13452, 20480, 29980, 42288, ...
0, 100, 456, 1312, 3088, 5964, 10816, 17768, 27840, 41652, 60040, 83448, ...
0, 240, 990, 2652, 5964, 11340, 20142, 32436, 50004, 73704, 105282, 144936, ...
0, 490, 1920, 4972, 10816, 20142, 35264, 55916, 84960, 123690, 174976, 238512, ...
0, 896, 3360, 8420, 17768, 32436, 55916, 88088, 132708, 191588, 268972, 363876, ...
0, 1512, 5520, 13452, 27840, 50004, 84960, 132708, 198912, 285312, 397968, 534888, ...
0, 2400, 8550, 20480, 41652, 73704, 123690, 191588, 285312, 407744, 566046, 757008, ...
...
The initial antidiagonals are:
0
0, 0
0, 0, 0
0, 6, 6, 0
0, 32, 48, 32, 0
0, 100, 168, 168, 100, 0
0, 240, 456, 532, 456, 240, 0
0, 490, 990, 1312, 1312, 990, 490, 0
0, 896, 1920, 2652, 3088, 2652, 1920, 896, 0
0, 1512, 3360, 4972, 5964, 5964, 4972, 3360, 1512, 0
0, 2400, 5520, 8420, 10816, 11340, 10816, 8420, 5520, 2400, 0
0, 3630, 8550, 13452, 17768, 20142, 20142, 17768, 13452, 8550, 3630, 0
...
		

Crossrefs

The main diagonal is A334713.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.

A334711 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that they form a convex quadrilateral.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 9, 9, 0, 0, 36, 70, 36, 0, 0, 100, 276, 276, 100, 0, 0, 225, 750, 1038, 750, 225, 0, 0, 441, 1677, 2788, 2788, 1677, 441, 0, 0, 784, 3260, 6190, 7398, 6190, 3260, 784, 0, 0, 1296, 5776, 11942, 16328, 16328, 11942, 5776, 1296, 0, 0, 2025, 9508, 21062, 31396, 35727, 31396, 21062, 9508, 2025, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020
For the limiting probability that the four points form a convex quadrilateral when n and k are large, see the link to Sylvester's Four-Point Problem. Thanks to Ed Pegg Jr for this comment.

Examples

			The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, ...
0, 9, 70, 276, 750, 1677, 3260, 5776, 9508, 14825, 22090, 31764, ...
0, 36, 276, 1038, 2788, 6190, 11942, 21062, 34586, 53748, 79930, 114760, ...
0, 100, 750, 2788, 7398, 16328, 31396, 55244, 90484, 140372, 208490, 299048, ...
0, 225, 1677, 6190, 16328, 35727, 68447, 120106, 196338, 304161, 451035, 646116, ...
0, 441, 3260, 11942, 31396, 68447, 130768, 229034, 373968, 578777, 857524, 1227572, ...
0, 784, 5776, 21062, 55244, 120106, 229034, 400116, 652318, 1008438, 1492870, 2135534, ...
0, 1296, 9508, 34586, 90484, 196338, 373968, 652318, 1062016, 1640284, 2426660, 3469356, ...
0, 2025, 14825, 53748, 140372, 304161, 578777, 1008438, 1640284, 2531001, 3742053, 5347100, ...
...
The initial antidiagonals are:
0,
0, 0,
0, 1, 0,
0, 9, 9, 0,
0, 36, 70, 36, 0,
0, 100, 276, 276, 100, 0,
0, 225, 750, 1038, 750, 225, 0,
0, 441, 1677, 2788, 2788, 1677, 441, 0,
0, 784, 3260, 6190, 7398, 6190, 3260, 784, 0,
0, 1296, 5776, 11942, 16328, 16328, 11942, 5776, 1296, 0,
0, 2025, 9508, 21062, 31396, 35727, 31396, 21062, 9508, 2025, 0,
0, 3025, 14825, 34586, 55244, 68447, 68447, 55244, 34586, 14825, 3025, 0,
...
		

Crossrefs

The main diagonal is A189413.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.

A334703 Triangle read by rows: T(n,k) = binomial(n*k,3) (0 <= k <= n).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 1, 20, 84, 0, 4, 56, 220, 560, 0, 10, 120, 455, 1140, 2300, 0, 20, 220, 816, 2024, 4060, 7140, 0, 35, 364, 1330, 3276, 6545, 11480, 18424, 0, 56, 560, 2024, 4960, 9880, 17296, 27720, 41664, 0, 84, 816, 2925, 7140, 14190, 24804, 39711, 59640, 85320
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2020

Keywords

Examples

			Triangle begins:
[0]
[0, 0]
[0, 0, 4]
[0, 1, 20, 84]
[0, 4, 56, 220, 560]
[0, 10, 120, 455, 1140, 2300]
[0, 20, 220, 816, 2024, 4060, 7140]
[0, 35, 364, 1330, 3276, 6545, 11480, 18424]
[0, 56, 560, 2024, 4960, 9880, 17296, 27720, 41664]
[0, 84, 816, 2925, 7140, 14190, 24804, 39711, 59640, 85320]
...
		

Crossrefs

See A334702 for another version.
This is a companion to the triangles A334704 and A334705.
Cf. A007318.

A334707 Number of non-collinear triples in a 5 X n rectangular grid.

Original entry on oeis.org

0, 100, 412, 1056, 2148, 3820, 6176, 9352, 13456, 18612, 24940, 32568, 41596, 52164, 64384, 78376, 94256, 112156, 132180, 154464, 179116, 206260, 236016, 268512, 303848, 342164, 383572, 428192, 476140, 527548, 582520, 641192, 703672, 770084, 840548, 915192, 994116
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2020

Keywords

Crossrefs

A row of A334705.

Formula

From Stefano Spezia, Jun 20 2020: (Start)
G.f.: 4*x*(25 + 53*x + 83*x^2 + 87*x^3 + 67*x^4 + 35*x^5 + 10*x^6)/((1 - x)^4*(1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4 + x^5)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-5) + a(n-6) - a(n-7) + 2*a(n-8) - a(n-9) for n > 9. (End)

Extensions

Terms a(6) and beyond from Giovanni Resta, Jun 20 2020
Showing 1-7 of 7 results.