A334704 Triangle read by rows: T(n,k) (1 <= k <= n) = number of ways to choose three collinear points from an n X k grid of points.
0, 0, 0, 1, 2, 8, 4, 8, 20, 44, 10, 20, 43, 84, 152, 20, 40, 78, 140, 240, 372, 35, 70, 130, 224, 369, 558, 824, 56, 112, 200, 332, 528, 780, 1132, 1544, 84, 168, 293, 472, 734, 1064, 1519, 2052, 2712, 120, 240, 410, 648, 988, 1408, 1982, 2652, 3480, 4448
Offset: 1
Examples
Triangle begins: 0, 0, 0, 1, 2, 8, 4, 8, 20, 44, 10, 20, 43, 84, 152, 20, 40, 78, 140, 240, 372, 35, 70, 130, 224, 369, 558, 824, 56, 112, 200, 332, 528, 780, 1132, 1544, 84, 168, 293, 472, 734, 1064, 1519, 2052, 2712, 120, 240, 410, 648, 988, 1408, 1982, 2652, 3480, 4448, 165, 330, 556, 864, 1295, 1826, 2542, 3372, 4393, 5586, 6992, ... This is the lower half of a symmetric array. The full symmetric array begins: 0, 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, ... 1, 2, 8, 20, 43, 78, 130, 200, 293, 410, 556, 732, ... 4, 8, 20, 44, 84, 140, 224, 332, 472, 648, 864, 1120, ... 10, 20, 43, 84, 152, 240, 369, 528, 734, 988, 1295, 1652, ... 20, 40, 78, 140, 240, 372, 558, 780, 1064, 1408, 1826, 2304, ... 35, 70, 130, 224, 369, 558, 824, 1132, 1519, 1982, 2542, 3172, ... 56, 112, 200, 332, 528, 780, 1132, 1544, 2052, 2652, 3372, 4172, ... 84, 168, 293, 472, 734, 1064, 1519, 2052, 2712, 3480, 4393, 5396, ... 120, 240, 410, 648, 988, 1408, 1982, 2652, 3480, 4448, 5586, 6824, ... 165, 330, 556, 864, 1295, 1826, 2542, 3372, 4393, 5586, 6992, 8508, ... 220, 440, 732, 1120, 1652, 2304, 3172, 4172, 5396, 6824, 8508, 10332, ... ...
Links
Crossrefs
Extensions
Rows 6 onwards from Tom Duff. - N. J. A. Sloane, Jun 19 2020
Comments