A334730 a(n) = Product_{d|n} gcd(tau(d), pod(d)) where tau(k) is the number of divisors of k (A000005) and pod(k) is the product of divisors of k (A007955).
1, 2, 1, 2, 1, 8, 1, 8, 3, 8, 1, 48, 1, 8, 1, 8, 1, 144, 1, 16, 1, 8, 1, 1536, 1, 8, 3, 16, 1, 256, 1, 16, 1, 8, 1, 7776, 1, 8, 1, 512, 1, 256, 1, 16, 9, 8, 1, 3072, 1, 16, 1, 16, 1, 1152, 1, 512, 1, 8, 1, 36864, 1, 8, 9, 16, 1, 256, 1, 16, 1, 256, 1, 2985984, 1, 8, 3, 16, 1, 256, 1
Offset: 1
Keywords
Examples
a(6) = gcd(tau(1), pod(1)) * gcd(tau(2), pod(2)) * gcd(tau(3), pod(3)) * gcd(tau(6), pod(6)) = gcd(1, 1) * gcd(2, 2) * gcd(2, 3) * gcd(4, 36) = 1 * 2 * 1 * 4 = 8.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Magma
[&*[GCD(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
-
Mathematica
a[n_] := Product[GCD[DivisorSigma[0, d], d^(DivisorSigma[0, d]/2)], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 09 2020 *)
-
PARI
pod(n) = vecprod(divisors(n)); a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(numdiv(d[k]), pod(d[k]))); \\ Michel Marcus, May 09-11 2020
Formula
a(p) = 1 for p = odd primes (A065091).