A334739 Number of unordered factorizations of n with 2 different parts > 1.
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 5, 0, 1, 1, 3, 0, 3, 0, 5, 1, 1, 1, 6, 0, 1, 1, 5, 0, 3, 0, 3, 3, 1, 0, 8, 0, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 6, 0, 1, 3, 6, 1, 3, 0, 3, 1, 3, 0, 10, 0, 1, 3, 3, 1, 3, 0, 8, 2, 1, 0, 6, 1, 1, 1, 5, 0, 6, 1, 3, 1, 1, 1, 10, 0, 3, 3, 6
Offset: 1
Keywords
Examples
a(24) = 5 = #{ (12,2), (6,4), (8,3), (6,2,2), (3,2,2,2) }.
Links
Crossrefs
Programs
-
R
maxe <- function(n,d) { i=0; while( n%%(d^(i+1))==0 ) { i=i+1 }; i } uhRec <- function(n,l=1) { uh = 0 if( n<=0 ) { return(0) } else if(n==1) { return(ifelse(l==0,1,0)) } else if(l<=0) { return(0) } else if( (n>=2) && (l>=1) ) { for(d in 2:n) { m = maxe(n,d) if(m>=1) for(i in 1:m) for(j in 1:min(i,l)) { uhj = uhRec( n/d^i, l-j ) uh = uh + log(d)/log(n) * (-1)^(j+1) * choose(i,j) * uhj } } return(round(uh,3)) } } n=100; l=2; sapply(1:n,uhRec,l) # A334739 n=100; l=3; sapply(1:n,uhRec,l) # A334740
Formula
(Joint) D.g.f.: Product_{n>=2} ( 1 + t/(n^s-1) ).
Recursion: a(n) = h_2(n), where h_l(n) * log(n) = Sum_{ d^i | n } Sum_{j=1..l} (-1)^(j+1) * h_{l-j}(n/d^i) * log(d), with h_l(n)=1 if n=1 and l=0 otherwise h_l(n)=0.
Comments