A334786 a(n) is the total number of down steps before the first up step in all 4_2-Dyck paths of length 5*n. A 4_2-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
0, 3, 16, 115, 950, 8510, 80388, 788392, 7950930, 81935425, 859005840, 9132977490, 98240702586, 1067197649840, 11691092372000, 129011823098160, 1432744619523530, 16000911127589355, 179590878292003200, 2024687100104286525, 22917687021180660940
Offset: 0
Examples
For n = 1, there are the 4_2-Dyck paths UDDDD, DUDDD, DDUDD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
Links
- Stefano Spezia, Table of n, a(n) for n = 0..900
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
Programs
-
Mathematica
a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n+1) - 2 * Binomial[5*n+2, n]/(n+1); Array[a, 21, 0]
Formula
a(0) = 0 and a(n) = 4 * binomial(5*n, n)/(n+1) - 2 * binomial(5*n+2, n)/(n+1) for n > 0.
a(n) ~ c*2^(-8*n)*5^(5*n)/n^(3/2), where c = (7/16)*sqrt(5/(2*Pi)). - Stefano Spezia, Oct 19 2022