cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334806 a(n) = Product_{d|n} lcm(tau(d), sigma(d)) where tau(k) is the number of divisors of k (A000005) and sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 6, 4, 126, 6, 288, 8, 7560, 156, 1296, 12, 508032, 14, 1152, 576, 1171800, 18, 876096, 20, 1143072, 1024, 2592, 24, 3657830400, 558, 7056, 6240, 4064256, 30, 107495424, 32, 147646800, 2304, 11664, 2304, 1265709908736, 38, 7200, 3136, 24690355200, 42
Offset: 1

Views

Author

Jaroslav Krizek, Jun 26 2020

Keywords

Examples

			a(6) = lcm(tau(1), sigma(1)) * lcm(tau(2), sigma(2)) * lcm(tau(3), sigma(3)) * lcm(tau(6), sigma(6)) = lcm(1, 1) * lcm(2, 3) * lcm(2, 4) * lcm(4, 12) = 1 * 6 * 4 * 12 = 288.
		

Crossrefs

Cf. A334784 (Sum_{d|n} lcm(tau(d), sigma(d))), A334729 (Product_{d|n} gcd(tau(d), sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009278 (lcm(tau(n), sigma(n))).

Programs

  • Magma
    [&*[LCM(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := Product[LCM[DivisorSigma[0, d], DivisorSigma[1, d]], {d, Divisors[n]}]; Array[a, 41] (* Amiram Eldar, Jun 27 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(numdiv(d[k]), sigma(d[k]))); \\ Michel Marcus, Jun 27 2020

Formula

a(p) = p + 1 for p = odd primes (A065091).