A334906 Numbers k such that binomial(prime(k+2), prime(k+1)) and binomial(prime(k+1), prime(k)) are coprime.
1, 2, 6, 7, 12, 19, 20, 26, 33, 34, 37, 38, 43, 44, 45, 56, 60, 63, 68, 71, 75, 78, 82, 83, 86, 89, 94, 95, 106, 112, 115, 116, 122, 135, 140, 141, 142, 148, 151, 152, 166, 169, 175, 178, 197, 198, 206, 210, 211, 226, 227, 233, 236, 244, 251, 264, 285, 286, 287, 288, 301, 302, 313, 314, 321, 322
Offset: 1
Keywords
Examples
a(3)=6 is in the sequence because the 6th, 7th and 8th primes are 13, 17 and 19, and binomial(17,13)=2380 and binomial(19,17)=171 are coprime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A058078.
Programs
-
Maple
filter:= n -> igcd(binomial(ithprime(n+2),ithprime(n+1)),binomial(ithprime(n+1),ithprime(n)))=1: select(filter, [$1..1000]);
-
PARI
isok(k) = gcd(binomial(prime(k+2), prime(k+1)), binomial(prime(k+1), prime(k))) == 1; \\ Michel Marcus, Jul 02 2021
Comments