cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A058078 Greatest common divisor of two binomial coefficients formed from consecutive primes: a(n) = gcd(C(prime(n+2), prime(n+1)), C(prime(n+1), prime(n))).

Original entry on oeis.org

1, 1, 3, 6, 2, 1, 1, 35, 15, 3, 2, 1, 3, 5, 14, 6, 6, 7, 1, 1, 5, 4, 4, 15, 3, 1, 2, 2, 55, 5, 4, 3, 1, 1, 3, 84, 1, 1, 28, 10, 3, 3, 1, 1, 1, 221, 3, 6, 2, 7, 3, 15, 231, 21, 7, 1, 5, 70, 3, 1, 1292, 35, 1, 3, 15, 24, 7, 1, 6, 7, 1, 3, 42, 5, 1, 231, 35, 1, 143, 2, 5, 1, 1, 7, 14, 1, 45, 3
Offset: 1

Views

Author

Labos Elemer, Nov 13 2000

Keywords

Examples

			n = 8, a(8) = gcd(C(prime(10), prime(9)), C(prime(9), prime(8))) = gcd(C(29, 23), C(23, 19)) = gcd(8855, 475020) = gcd(5*7*11*23, 2^2*3^2*5*7*13*29) = 5*7 = 35.
		

Crossrefs

Programs

  • Maple
    A058078:=n->gcd(binomial(ithprime(n+2),ithprime(n+1)), binomial(ithprime(n+1), ithprime(n))); seq(A058078(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
  • Mathematica
    GCD[Binomial[Last[#],#[[2]]],Binomial[#[[2]],First[#]]]&/@ Partition[ Prime[ Range[90]],3,1] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    a(n,p=prime(n))=my(q=nextprime(p+1),r=nextprime(q+1)); gcd(binomial(r,q), binomial(q,p)) \\ Charles R Greathouse IV, Nov 18 2015

Formula

a(n) = gcd(f(n+1), f(n)) where f(n) = binomial(prime(n+1), prime(n)). - Joerg Arndt, Apr 05 2014

Extensions

Edited by Wolfdieter Lang, Apr 16 2014
Showing 1-1 of 1 results.