cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331450 Irregular triangle read by rows: Take a regular n-sided polygon (n>=3) with all diagonals drawn, as in A007678. Then T(n,k) = number of k-sided polygons in that figure for k = 3, 4, ..., max_k.

Original entry on oeis.org

1, 4, 10, 0, 1, 18, 6, 35, 7, 7, 0, 1, 56, 24, 90, 36, 18, 9, 0, 0, 1, 120, 90, 10, 176, 132, 44, 22, 276, 168, 377, 234, 117, 39, 0, 13, 0, 0, 0, 0, 1, 476, 378, 98, 585, 600, 150, 105, 15, 0, 0, 0, 0, 0, 0, 0, 1, 848, 672, 128, 48, 1054, 901, 357, 136, 17, 34, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1404, 954, 72, 18, 18, 1653, 1444, 646, 190, 57, 38, 2200, 1580, 580, 120, 0, 20, 2268, 2520, 903, 462, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 3

Views

Author

Keywords

Comments

Computed by Scott R. Shannon, Jan 24 2020
See A331451 for a version of this triangle giving the counts for k = 3 through n.
Mitosis of convex polygons, by Scott R. Shannon and N. J. A. Sloane, Dec 13 2021 (Start)
Borrowing a term from biology, we can think of this process as the "mitosis" of a regular polygon. Row 6 of this triangle shows that a regular hexagon "mitoses" into 18 triangles and 4 quadrilaterals, which we denote by 3^18 4^6.
What if we start with a convex but not necessarily regular n-gon? Let M(n) denote the number of different decompositions into cells that can be obtained. For n = 3, 4, and 5 there is only one possibility. For n = 6 there are two possibilities, 3^18 4^6 and 3^19 4^3 5^3. For n = 7 there are at least 11 possibilities. So the sequence M(n) for n >= 3 begins 1, 1, 1, 2, >=11, ...
The links below give further information. See also A350000. (End)

Examples

			A hexagon with all diagonals drawn contains 18 triangles and 6 quadrilaterals, so row 6 is [18, 6].
Triangle begins:
  1,
  4,
  10, 0, 1,
  18, 6,
  35, 7, 7, 0, 1,
  56, 24,
  90, 36, 18, 9, 0, 0, 1,
  120, 90, 10,
  176, 132, 44, 22, 0, 0, 0, 0, 1
  276, 168,
  377, 234, 117, 39, 0, 13, 0, 0, 0, 0, 1,
  476, 378, 98,
  585, 600, 150, 105, 15, 0, 0, 0, 0, 0, 0, 0, 1,
  848, 672, 128, 48,
  1054, 901, 357, 136, 17, 34, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  1404, 954, 72, 18, 18,
  1653, 1444, 646, 190, 57, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
  2200, 1580, 580, 120, 0, 20,
  2268, 2520, 903, 462, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  2992, 2860, 814, 66, 44, 44,
  3749, 2990, 1564, 644, 115, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  ...
The row sums are A007678, the first column is A062361.
		

Crossrefs

Extensions

Added "regular" to definition. - N. J. A. Sloane, Mar 06 2021

A352806 Orders of the finite groups PSL_2(K) when K is a finite field with q = A246655(n) elements.

Original entry on oeis.org

6, 12, 60, 60, 168, 504, 360, 660, 1092, 4080, 2448, 3420, 6072, 7800, 9828, 12180, 14880, 32736, 25308, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 262080, 150348, 178920, 194472, 246480, 265680, 285852, 352440, 456288, 515100, 546312, 612468, 647460
Offset: 1

Views

Author

Jianing Song, Apr 04 2022

Keywords

Comments

For a communtative unital ring R, PSL_n(R), the projective special linear group of order n over R, is defined as SL_n(R)/{r*I_n: r^n = 1}. This is related to PGL_n(R), the projective general linear group of order n over R, which is defined as GL_n(R)/{r*I_n: r is a unit of R}.
Note that a(3) = a(4) = 60 refer to the same group (PSL(2,4) = PSL(2,5) = Alt(5)). Also PSL(2,9) = Alt(6).

Examples

			a(6) = 504 since A246655(6) = 8, so a(6) = 8*(8^2-1)/gcd(2,8-1) = 504.
a(7) = 360 since A246655(7) = 9, so a(7) = 9*(9^2-1)/gcd(2,9-1) = 360.
		

Crossrefs

Cf. A246655.
Order of GL(2,q): A059238;
SL(2,q): A329119;
PGL(2,q): A329119;
PSL(2,q): this sequence;
Aut(GL(2,q)): A353247;
PGammaL(2,q) = Aut(SL(2,q)) = Aut(PGL(2,q)) = Aut(PSL(2,q)): A352807.
A117762 is a subsequence, A335000 is a supersequence.

Programs

  • PARI
    [(q+1)*q*(q-1)/gcd(2,q-1) | q <- [1..200], isprimepower(q)]

Formula

|PSL(2,q)| = q*(q^2-1)/2 if q is odd, q*(q^2-1) otherwise.
|PSL(2,q)| = |PGL(2,q)|/gcd(2,q-1) = |SL(2,q)|/gcd(2,q-1).
In general, |PSL(n,q)| = |PGL(n,q)|/gcd(n,q-1) = |SL(n,q)|/gcd(n,q-1).

A334884 Order of the non-isomorphic groups PSL(m,q) [or PSL_m(q)] in increasing order as q runs through the prime powers.

Original entry on oeis.org

6, 12, 60, 168, 360, 504, 660, 1092, 2448, 3420, 4080, 5616, 6072, 7800, 9828, 12180, 14880, 20160, 20160, 25308, 32736, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 262080, 265680, 285852, 352440, 372000, 456288
Offset: 1

Views

Author

Bernard Schott, May 14 2020

Keywords

Comments

The projective special linear group PSL(m,q) is the quotient group of SL(m,q) with its center.
Theorem: The group PSL(m,q) is simple except for PSL(2,2) and PSL(2,3).
Exceptional isomorphisms (let "==" denote "isomorphic to"):
a(1) = 6 for PSL(2,2) == GL(2,2) == SL(2,2) == S_3 (see example).
a(2) = 12 for PSL(2,3) == A_4.
a(3) = 60 for PSL(2,4) and for PSL(2,5) with PSL(2,4) == PSL(2,5) == A_5 that is the smallest nonabelian simple group.
a(4) = 168 for PSL(2,7) and for PSL(3,2) with PSL(2,7) == PSL(3,2); PSL(2, 7) is the second smallest nonabelian simple group (see example).
a(5) = 360 for PSL(2,9) == A_6.
a(18) = a(19) = 20160 for PSL(4,2) == A_8 and for PSL(3,4) non-isomorphic to A_8 (see comment in A137863).
Array for order of PSL(m,q):
m\q| 2 3 4 =2^2 5 7
----------------------------------------------------------------------
2 | 6 12 60 60 168
3 | 168 5616 20160 372000 1876896
4 | 20160 6065280 987033600 7254000000 2317591180800
5 | 9999360 237783237120 258492255436800 56653740000000000 #PSL(5,7)
with #PSL(5,7) = 187035198320488089600

Examples

			a(1) = #PSL(2,2) = (2^2-1)*2 = 6 and the 6 elements of PSL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 matrices with entries in F_2:
   (1 0)   (1 1)   (1 0)   (0 1)   (0 1)   (1 1)
   (0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0).
a(4) = #PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168, and also,
a(4) = #PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168.
		

Crossrefs

Subsequence: A117762 (PSL(2,prime(n))).
Cf. A137863.
Cf. A334994 and A335000 for other versions of this sequence.

Formula

#PSL(m,q) = (Product_{j=0..m-2} (q^m - q^j)) * q^(m-1) / gcd(m,q-1).

A334994 Orders of the groups PSL(m,q) in increasing order as q runs through the prime powers (without repetitions).

Original entry on oeis.org

6, 12, 60, 168, 360, 504, 660, 1092, 2448, 3420, 4080, 5616, 6072, 7800, 9828, 12180, 14880, 20160, 25308, 32736, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 262080, 265680, 285852, 352440, 372000, 456288, 515100, 546312
Offset: 1

Views

Author

Michel Marcus, May 19 2020

Keywords

Comments

60 is the order of PSL(2,4) or PSL(2,5).
168 is the order of PSL(2,7) or PSL(3,2).
20160 is the order of PSL(4,2) or PSL(3,4).
See A334884 and A335000 for variations of this sequence.

Examples

			#PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168 = a(4), and,
#PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168 = a(4).
		

Crossrefs

Cf. A117762 (PSL(2, prime(n))).
Cf. A334884 and A335000 (both with repetitions, but different).

Formula

#PSL(m,q) = (Product_{j=0..m-2} (q^m - q^j)) * q^(m-1) / gcd(m,q-1). - Bernard Schott, May 19 2020
Showing 1-4 of 4 results.