cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335004 Decimal expansion of 6*exp(gamma)/Pi^2.

Original entry on oeis.org

1, 0, 8, 2, 7, 6, 2, 1, 9, 3, 2, 6, 0, 9, 2, 4, 5, 8, 0, 1, 2, 2, 1, 8, 8, 0, 3, 8, 1, 9, 0, 9, 2, 6, 5, 7, 0, 1, 8, 4, 3, 0, 6, 6, 5, 5, 5, 8, 3, 6, 0, 0, 1, 4, 4, 1, 0, 2, 0, 3, 1, 9, 7, 4, 3, 5, 5, 1, 2, 8, 6, 1, 9, 2, 9, 8, 2, 9, 5, 0, 4, 3, 4, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			1.0827621932609245801221880381909265701843066555836...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.1, p. 31.
  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, page 100.

Crossrefs

Cf. A001620 (gamma), A013661 (Pi^2/6), A051377 (esigma), A059956 (6/Pi^2), A073004 (exp(gamma)), A246499 (Pi^2/(6*exp(gamma))).

Programs

  • Mathematica
    RealDigits[6*Exp[EulerGamma]/Pi^2, 10, 100][[1]]
  • PARI
    6*exp(Euler)/Pi^2 \\ Michel Marcus, May 19 2020

Formula

Equals limsup_{k->oo} esigma(k)/(k*log(log(k))), where esigma(k) is the sum of exponential divisors of k (A051377).
Equals A073004 * A059956 = A073004 / A013661 = 1 / A246499.
Equals lim_{k->oo} (1/log(k)) * Product_{p prime <= k} (1 + 1/p). - Amiram Eldar, Jul 09 2020