cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335079 Row sums of A335078.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 3, 4, 1, 6, 1, 7, 2, 2, 2, 11, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 13, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 5, 2, 1, 16, 2, 2, 2, 8, 1, 16
Offset: 2

Views

Author

Stefano Spezia, May 23 2020

Keywords

Crossrefs

Cf. A001222 (Omega function), A334996, A334997, A335078.

Programs

  • Mathematica
    tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; (* A334997 *)
    Nd[n_, m_]:=Sum[(-1)^k*Binomial[m, k]*tau[n, m-k-1], {k, 0, m-1}]; (* A334996 *)
    T[n_,k_]:=1/k*DivisorSum[k,EulerPhi[#]*Nd[n^(1/#),k/#]&,IntegerQ[n^(1/#)]&]; (* A335078 *)
    Table[Sum[T[n,m],{m,1,PrimeOmega[n]}],{n,2,90}]
  • PARI
    TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334996
    U(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1));
    T(n, k) = my(p); (1/k)*sumdiv(k, d, if (ispower(n, d, &p), eulerphi(d)*U(p, k/d)));
    row(n) = vector(bigomega(n), k, T(n,k)); \\ A335078
    a(n) = vecsum(row(n)); \\ Michel Marcus, May 25 2020