A335079 Row sums of A335078.
1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 3, 4, 1, 6, 1, 7, 2, 2, 2, 11, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 13, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 5, 2, 1, 16, 2, 2, 2, 8, 1, 16
Offset: 2
Keywords
Links
- Stefano Spezia, Table of n, a(n) for n = 2..10000
Programs
-
Mathematica
tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; (* A334997 *) Nd[n_, m_]:=Sum[(-1)^k*Binomial[m, k]*tau[n, m-k-1], {k, 0, m-1}]; (* A334996 *) T[n_,k_]:=1/k*DivisorSum[k,EulerPhi[#]*Nd[n^(1/#),k/#]&,IntegerQ[n^(1/#)]&]; (* A335078 *) Table[Sum[T[n,m],{m,1,PrimeOmega[n]}],{n,2,90}]
-
PARI
TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334996 U(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1)); T(n, k) = my(p); (1/k)*sumdiv(k, d, if (ispower(n, d, &p), eulerphi(d)*U(p, k/d))); row(n) = vector(bigomega(n), k, T(n,k)); \\ A335078 a(n) = vecsum(row(n)); \\ Michel Marcus, May 25 2020