A335097 Number of integers less than n with the same number of prime factors (counted with multiplicity) as n.
0, 0, 1, 0, 2, 1, 3, 0, 2, 3, 4, 1, 5, 4, 5, 0, 6, 2, 7, 3, 6, 7, 8, 1, 8, 9, 4, 5, 9, 6, 10, 0, 10, 11, 12, 2, 11, 13, 14, 3, 12, 7, 13, 8, 9, 15, 14, 1, 16, 10, 17, 11, 15, 4, 18, 5, 19, 20, 16, 6, 17, 21, 12, 0, 22, 13, 18, 14, 23, 15, 19, 2, 20, 24, 16, 17, 25, 18, 21, 3
Offset: 1
Keywords
Examples
a(10) = 3 because bigomega(10) = 2 and also bigomega(4) = bigomega(6) = bigomega(9) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= NULL: for n from 1 to 100 do t:= numtheory:-bigomega(n); if not assigned(R[t]) then A:= A,0; R[t]:= 1; else A:= A, R[t]; R[t]:= R[t]+1; fi od: A; # Robert Israel, Oct 24 2021
-
Mathematica
Table[Length[Select[Range[n - 1], PrimeOmega[#] == PrimeOmega[n] &]], {n, 80}]
-
PARI
a(n)={my(t=bigomega(n)); sum(k=1, n-1, bigomega(k)==t)} \\ Andrew Howroyd, Oct 31 2020
-
Python
from math import prod, isqrt from sympy import isprime, primepi, primerange, integer_nthroot, primeomega def A335097(n): if n==1: return 0 if isprime(n): return primepi(n)-1 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,primeomega(n)))-1) # Chai Wah Wu, Aug 28 2024
Formula
a(n) = |{j < n : bigomega(j) = bigomega(n)}|.
a(n) = A058933(n) - 1.