cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304480 a(n) is the least m such that lambda(k) >= n for all k >= m where lambda is A002322, the Carmichael lambda function.

Original entry on oeis.org

1, 3, 25, 25, 241, 241, 505, 505, 505, 505, 505, 505, 65521, 65521, 65521, 65521, 65521, 65521, 65521, 65521, 65521, 65521, 65521, 65521, 131041, 131041, 131041, 131041, 131041, 131041, 171865, 171865, 171865, 171865, 171865, 171865, 138181681, 138181681, 138181681, 138181681, 138181681, 138181681
Offset: 1

Views

Author

Michel Marcus, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    minvl(n, v) = {vgt = select(x->(x>=n), v, 1); first = vgt[1]; vgtd = vector(#vgt-1, k, vgt[k+1] - vgt[k]); vgtdr = Vecrev(vgtd); vokdiff = select(x->x!=1, vgtdr, 1); if (#vokdiff, #v - vokdiff[1]+1, first);}
    lista(nn) = {v = read("v002322.txt"); for (n=1, nn, print1(minvl(n, v), ", "););}

Extensions

a(32) and beyond from Seiichi Manyama, May 24 2020

A335116 Where records occur in A304480.

Original entry on oeis.org

1, 2, 3, 5, 7, 13, 25, 31, 37, 61, 73, 109, 121, 145, 181, 241, 361, 421, 541, 721, 841, 1009, 1081, 1201, 1261, 1621, 1681, 2017, 2161, 2521, 3361, 3781, 5041, 6481, 7561, 8401, 10081, 12601, 15121, 25201, 30241, 42841, 45361, 55441, 60481, 75601, 85681, 100801, 110881, 128521, 131041
Offset: 1

Views

Author

Seiichi Manyama, May 24 2020

Keywords

Comments

a(n) is odd for n > 2.

Crossrefs

Cf. A002322, A304480, A335117 (records).

A335128 Records in A006863.

Original entry on oeis.org

1, 24, 240, 504, 65520, 131040, 171864, 138181680, 6814407600, 20174525280, 45185409360, 558781423200, 685933859520, 2601256998740400, 4578654981700800, 15571124394460034400, 375159113055066740400, 124708934978441512498800, 127589793288205521873600, 8644416283014847832296800, 29217965124687229769336640
Offset: 1

Views

Author

Seiichi Manyama, May 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    d[0] = 1; d[n_] := Denominator[BernoulliB[2*n]/(4*n)]; Union @ FoldList[Max, Array[d, 500, 0]] (* Amiram Eldar, May 03 2021 *)
  • PARI
    s=0; for(k=0, 1e3, t=if(k==0, 1, denominator(bernfrac(2*k)/(-4*k))); if(t>s, s=t; print1(s", ")))
Showing 1-3 of 3 results.