A335131 a(n) = Sum_{k=1..n} phi(k)*phi(k+1)*phi(k+2), where phi(k) = A000010(k) is Euler's totient function.
2, 6, 22, 38, 86, 134, 278, 374, 614, 774, 1254, 1542, 2118, 2502, 3526, 4294, 6022, 6886, 8614, 9574, 12214, 13974, 17494, 19414, 23734, 26326, 32374, 35062, 41782, 45622, 55222, 60342, 68022, 72630, 82998, 90774, 106326, 113238, 128598, 136278, 156438, 166518
Offset: 1
Keywords
Links
- L. Mirsky, Summation formula involving arithmetic functions, Duke Mathematical Journal, Vol. 16, No. 2 (1949), pp. 261-272.
Programs
-
Mathematica
Accumulate[Table[EulerPhi[k]*EulerPhi[k+1]*EulerPhi[k+2], {k, 1, 50}]]
-
PARI
a(n) = sum(k=1, n, eulerphi(k)*eulerphi(k+1)*eulerphi(k+2)); \\ Michel Marcus, May 24 2020
Formula
a(n) ~ 3*c*n^4 / 8, where c = A206256 = Product_{p prime} (1 - 3/p^2) [Mirsky, 1949, p. 270, formula 30].