A335203 a(n) is the packing chromatic number of n-hypercube graph.
2, 3, 5, 7, 15, 25, 49, 95
Offset: 1
Examples
Hypercube of dimension 1 needs 2 colors: 1 --- 2 Hypercube of dimension 2 needs 3 colors: 1 --- 2 | | | | 3 --- 1 Hypercube of dimension 3 needs 5 colors: 1 ----------- 2 | \ / | | \ / | | 4 --- 1 | | | | | | | | | | 2 --- 5 | | / \ | | / \ | 3 ----------- 1
Links
- B. Brešar, J. Ferme, S. Klavžar, and D. F. Rall, Survey on packing colorings, Discussiones Mathematicae Graph Theory, to appear (2020).
- W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Harris, and R. F. Rall, Broadcast chromatic numbers of graphs, Ars Combinatoria, 86 (2008) 33-49.
- P. Torres and M. Valencia-Pabon, The packing chromatic number of hypercubes, Discrete Applied Mathematics, 190 (2015), 127-140.
Formula
a(n) ~ (1/2 - O(1/k)) * 2^k (Proposition 7.3 from Goddard et al.).
a(n) >= 2*a(n-1) - (n-1) (Corollary 1 from Torres and Valencia-Pabon).
a(n) <= 3 + 2^n * (1/2 - 1/(2^ceiling(log_2(n)))) - 2 * floor((n-4)/2) (Thm. 1 from Torres and Valencia-Pabon).
Comments