cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335272 For m to be a term there must exist three Euclidean divisions of m by d, d', and d", m = d*q + r = d'*q' + r' = d"*q" + r", such that (r, q, d), (r', d', q'), and (q", r", d") are three geometric progressions.

Original entry on oeis.org

110, 132, 1332, 6162, 10712, 12210, 35156, 60762, 67340, 152490, 296480, 352242, 354620, 357006, 648830, 771762, 932190, 1197930, 2057790, 2803950, 3241800, 3310580, 4458432, 6454140, 7865220, 9613100, 10814232, 13976382, 16382256, 19267710, 53824232, 55138050
Offset: 1

Views

Author

Bernard Schott, May 30 2020

Keywords

Comments

Inspired by Project Euler, Problem 141 (see link).
The terms are necessary oblong numbers >= 6.

Examples

			For 110:
   110 | 18             110 |  6               110 | 100
       -----               ------               ---------
     2 |  6       ,       2 | 18       ,        10 |   1
For 132, see A335065.
For 1332:
  1332 | 121           1332 |  11            1332 | 1296
       ------              -------                -------
     1 |  11      ,       1 | 121      ,       36 |   1   .
		

Crossrefs

Intersection of A127629 and A002378.

Programs

  • Mathematica
    Select[(#^2 + #) & /@ Range[2000], (n = #; AnyTrue[ Range[1 + Sqrt@ n], #^2 == Mod[n, #] Floor[n/#] &]) &] (* Giovanni Resta, Jun 03 2020 *)
  • PARI
    isob(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378
    isgd(n) = {for(d=1, n, if((n\d)*(n%d)==d^2, return(1))); return(0)}; \\ A127629
    isok(n) = isob(n) && isgd(n); \\ Michel Marcus, May 30 2020

Extensions

More terms from Michel Marcus, May 30 2020
a(18)-a(26) from Jinyuan Wang, May 30 2020
Terms a(27) and beyond from Giovanni Resta, Jun 03 2020