A335274 a(n) = 2*a(n-1) + a(n-3), where a(0) = 0, a(1) = 1, a(2) = 4.
0, 1, 4, 8, 17, 38, 84, 185, 408, 900, 1985, 4378, 9656, 21297, 46972, 103600, 228497, 503966, 1111532, 2451561, 5407088, 11925708, 26302977, 58013042, 127951792, 282206561, 622426164, 1372804120, 3027814801, 6678055766, 14728915652, 32485646105, 71649347976
Offset: 0
Examples
a(2) = 4 as shown by these four tilings: _ _ _ _ |X|_ | |_ |X|_ | |_ |X|X| , |_|X| , |X|X| , |_| | |_ _| |X X| | | | |X|_| |_ _| |_ _| |_|_| |X X|
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,1).
Programs
-
Mathematica
LinearRecurrence[{2, 0, 1}, {0, 1, 4}, 50] (* Paolo Xausa, Mar 20 2025 *)
-
PARI
concat(0, Vec(x*(1 + 2*x) / (1 - 2*x - x^3) + O(x^35))) \\ Colin Barker, Jun 04 2020
Formula
a(n) = 2*a(n-1) + a(n-3).
G.f.: x*(1 + 2*x) / (1 - 2*x - x^3). - Colin Barker, Jun 04 2020
Comments