A335286 n is the a(n)-th positive integer having its sequence of exponents in canonical prime factorization.
1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 4, 1, 7, 1, 8, 2, 5, 6, 9, 1, 3, 7, 2, 3, 10, 1, 11, 1, 8, 9, 10, 1, 12, 11, 12, 2, 13, 2, 14, 4, 5, 13, 15, 1, 4, 2, 14, 6, 16, 1, 15, 3, 16, 17, 17, 1, 18, 18, 7, 1, 19, 3, 19, 8, 20, 4, 20, 1, 21, 21, 3, 9, 22, 5, 22, 2
Offset: 1
Examples
a(14) = 3 as 14 has prime signature [1, 1] and it's the third positive integer having that prime signature, after 6 and 10.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Maple
p:= proc() 0 end: a:= proc(n) option remember; local t; a(n-1); t:= (l-> mul(ithprime(i)^l[i][2], i=1..nops(l) ))(sort(ifactors(n)[2])); p(t):= p(t)+1 end: a(0):=0: seq(a(n), n=1..100); # Alois P. Heinz, Jun 01 2020
-
Mathematica
A071364[n_] := If[n == 1, 1, With[{f = FactorInteger[n]}, Times @@ (Prime[Range[Length[f]]]^f[[All, 2]])]]; Module[{b}, b[_] = 0; a[n_] := With[{t = A071364[n]}, b[t] = b[t] + 1]]; Array[a, 105] (* Jean-François Alcover, Jan 10 2022 *)
-
PARI
first(n) = { my(m = Map(), res = vector(n)); for(i = 1, n, c = factor(i)[,2]; if(mapisdefined(m, c), res[i] = mapget(m, c) + 1; mapput(m, c, res[i]) , res[i] = 1; mapput(m, c, 1) ) ); res }
Formula
Ordinal transform of A071364. - Alois P. Heinz, Jun 01 2020