A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.
1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1
Examples
The triangle T(n, k) begins n\k| 1 2 3 4 5 6 7 8 ---+------------------------------- 1 | 1 2 | 1 1 3 | 3 1 1 4 | 4 4 1 1 5 | 10 5 5 1 1 6 | 15 15 6 6 1 1 7 | 35 21 21 7 7 1 1 8 | 56 56 28 28 8 8 1 1 ...
Links
- Eric Charles Milner, A Combinatorial Theorem On Systems of Sets, Journal of the London Mathematical Society, 43, (1968), 204-206.
- W. H. W. Wong and E. G. Tay, On Cross-intersecting Sperner Families, arXiv:2001.01910 [math.CO], 2020.
- Index entries for sequences related to antichains.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
-
PARI
T(n, k) = binomial(n, (n+k+1)\2); vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020
Comments