A335335 Irregular triangle T(n,k) of Arnold numbers with n>=1 and 1<= abs(k) <= n.
1, 1, 0, 1, 1, 2, 0, 2, 3, 3, 4, 4, 0, 4, 8, 11, 11, 14, 16, 16, 0, 16, 32, 46, 57, 57, 68, 76, 80, 80, 0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512, 0, 512, 1024, 1520, 1984, 2402, 2763, 2763, 3124, 3428, 3664, 3824, 3904, 3904, 0, 3904, 7808, 11632, 15296, 18724, 21848, 24611, 24611, 27374, 29776, 31760, 33280, 34304, 34816, 34816
Offset: 1
Examples
Triangle begins: 1, 1, 0, 1, 1, 2, 0, 2, 3, 3, 4, 4, 0, 4, 8, 11, 11, 14, 16, 16, 0, 16, 32, 46, 57, 57, 68, 76, 80, 80, 0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512,
Links
- Heesung Shin and Jiang Zeng, More bijections for Entringer and Arnold families, arXiv:2006.00507 [math.CO], 2020.
Programs
-
PARI
T(n, k) = {if ((n==1) && (k==1), return (1)); if ((n+k) == 0, if (n==1, return(1), return (0))); if ((n>=k) && (k>1), return(T(n, k-1) + T(n-1, 1-k))); if ((k==1) && (n>k), return(T(n,-1))); if ((-1>=k) && (k>=-n), return(T(n, k-1) + T(n-1, -k)));} tabf(nn) = {for (n=1, nn, for (k=-n, -1, print1(T(n,k), ", ");); for (k=1, n, print1(T(n,k), ", ");); print;);}
Formula
T(n,k) is defined by T(1,1) = T(1,-1) = 1, T(n,-n) = 0 (n >= 2), and the recurrence
T(n,k) = T(n,k-1) + T(n-1,-k+1) if n >= k > 1,
T(n,k) = T(n,-1) if n > k = 1,
T(n,k) = T(n,k-1) + T(n-1,-k) if -1 >= k > -n.