cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335338 P_5(2n+1), the Legendre polynomial of order 5 at 2n+1.

Original entry on oeis.org

1, 1683, 23525, 129367, 458649, 1256651, 2904733, 5950575, 11138417, 19439299, 32081301, 50579783, 76767625, 112825467, 161311949, 225193951, 307876833, 413234675, 545640517, 709996599, 911764601, 1156995883, 1452361725, 1805183567, 2223463249, 2715913251, 3291986933
Offset: 0

Views

Author

Seiichi Manyama, Jun 02 2020

Keywords

Crossrefs

Row 5 of A335333.
Cf. A160737.

Programs

  • Mathematica
    a[n_] := LegendreP[5, 2*n + 1]; Array[a, 27, 0] (* Amiram Eldar, May 03 2021 *)
  • PARI
    a(n) = pollegendre(5, 2*n+1)
    
  • PARI
    a(n) = 252*n^5+630*n^4+560*n^3+210*n^2+30*n+1
    
  • PARI
    N=40; x='x+O('x^N); Vec((1+x)*(1+1676*x+11766*x^2+1676*x^3+x^4)/(1-x)^6)

Formula

a(n) = A160737(2*n+1)/4.
a(n) = 252*n^5 + 630*n^4 + 560*n^3 + 210*n^2 + 30*n + 1 = (2*n + 1) * (126*n^4 + 252*n^3 + 154*n^2 + 28*n + 1).
G.f.: (1+x)*(1+1676*x+11766*x^2+1676*x^3+x^4)/(1-x)^6.