A335342 Number of free trees with exactly n nodes with fewer than three neighbors.
1, 1, 2, 4, 9, 25, 70, 226, 753, 2675, 9785, 37087, 143487, 566952, 2274967, 9257906, 38113299, 158535204, 665364565, 2814924441, 11993967450, 51433198599, 221839745468, 961884808879, 4190783204515, 18339291329225
Offset: 1
Examples
For n=4, we have 1) a node with four neighbors, 2) two adjacent nodes with three neighbors each, 3) two adjacent nodes with two neighbors each, and 4) two adjacent nodes, one having two neighbors and the other three neighbors.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..60
- R. A. Russell, How many trees have n nodes with fewer than three neighbors?, MathOverflow, June 2020.
Crossrefs
Cf. A108521 (rooted trees).
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = 1+a[n-1] + Total[Product[Binomial[a[i]-1+Count[#,i], Count[#,i]], {i, DeleteCases[DeleteDuplicates[#], 1]}] & /@ IntegerPartitions[n,{2, n-1}]]; (* A108521 *) b[1] = 1; b[n_] := b[n] = If[n > 2, 1, 0] + If[EvenQ[n], a[n/2] (a[n/2] + 1)/2, a[(n-1)/2] (a[(n-1)/2]+1)/2] + If[n > 3, Total[If[Max[#] <= If[EvenQ[n], n/2-1, (n-1)/2], Product[Binomial[a[i] - 1 + Count[#, i], Count[#, i]], {i, DeleteCases[DeleteDuplicates[#], 1]}], 0] & /@ IntegerPartitions[n, {3, n-1}]], 0]; Table[b[n], {n, 40}] (* a[n] = A108521[n]; d[n] are coefficients of A^2(x) in g.f. *) a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #
-
PARI
\\ here S is A108521 as vector. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} S(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v, [0]))[n])); v} seq(n)={my(p=x*Ser(S(n))); Vec(p + (x/2-1)*p^2 + (x/2)*subst(p, x, x^2))} \\ Andrew Howroyd, Jun 06 2020
Formula
G.f.: A(x) + (x/2-1)*A^2(x) + (x/2)*A(x^2), where A(x) is the g.f. for A108521.
Comments