cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335342 Number of free trees with exactly n nodes with fewer than three neighbors.

Original entry on oeis.org

1, 1, 2, 4, 9, 25, 70, 226, 753, 2675, 9785, 37087, 143487, 566952, 2274967, 9257906, 38113299, 158535204, 665364565, 2814924441, 11993967450, 51433198599, 221839745468, 961884808879, 4190783204515, 18339291329225
Offset: 1

Views

Author

Robert A. Russell, Jun 02 2020

Keywords

Comments

Generates and uses values from A108521, rooted trees with exactly n generators, a generator being a leaf or node with just one child.

Examples

			For n=4, we have 1) a node with four neighbors, 2) two adjacent nodes with three neighbors each, 3) two adjacent nodes with two neighbors each, and 4) two adjacent nodes, one having two neighbors and the other three neighbors.
		

Crossrefs

Cf. A108521 (rooted trees).

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1+a[n-1] + Total[Product[Binomial[a[i]-1+Count[#,i], Count[#,i]], {i, DeleteCases[DeleteDuplicates[#], 1]}] & /@ IntegerPartitions[n,{2, n-1}]]; (* A108521 *)
    b[1] = 1; b[n_] := b[n] = If[n > 2, 1, 0] + If[EvenQ[n], a[n/2] (a[n/2] + 1)/2, a[(n-1)/2] (a[(n-1)/2]+1)/2] + If[n > 3, Total[If[Max[#] <= If[EvenQ[n], n/2-1, (n-1)/2], Product[Binomial[a[i] - 1 + Count[#, i], Count[#, i]], {i, DeleteCases[DeleteDuplicates[#], 1]}], 0] & /@ IntegerPartitions[n, {3, n-1}]], 0];
    Table[b[n], {n, 40}]
    (* a[n] = A108521[n]; d[n] are coefficients of A^2(x) in g.f. *)
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #
    				
  • PARI
    \\ here S is A108521 as vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    S(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v, [0]))[n])); v}
    seq(n)={my(p=x*Ser(S(n))); Vec(p + (x/2-1)*p^2 + (x/2)*subst(p, x, x^2))} \\ Andrew Howroyd, Jun 06 2020

Formula

G.f.: A(x) + (x/2-1)*A^2(x) + (x/2)*A(x^2), where A(x) is the g.f. for A108521.