A335371 Harmonic numbers with a record number of harmonic numbers that can be generated from them using an iterative process of multiplying by primes (see Comments).
1, 28, 1638, 6200, 950976, 2178540, 2457000, 4713984, 45532800, 142990848, 459818240, 1381161600, 10200236032, 57575890944, 109585986048, 513480135168, 1553357978368, 10881843388416, 43947421401888
Offset: 1
Examples
1638 is a term since a record number of 3 new harmonic numbers can be generated from it. In the first iteration 2 new harmonic numbers can be generated: 1638 * 5 = 8190, and 1638 * 17 = 27846. In the second iteration, a new harmonic number can be generated from 8190: 8190 * 29 = 237510.
Programs
-
Mathematica
harmNums = Cases[Import["https://oeis.org/A001599/b001599.txt", "Table"], {, }][[;; , 2]]; harMean[n_] := n * DivisorSigma[0, n]/DivisorSigma[1, n]; harmGen[n_] := Module[{d = Divisors[harMean[n]]}, n * Select[2*d - 1, PrimeQ[#] && ! Divisible[n, #] &]]; harmGens[s_] := Union@Flatten[harmGen /@ s]; lenmax = -1; seq = {}; Do[len = Length @ Union @ Flatten @ FixedPointList[harmGens, {harmNums[[k]]}]; If[len > lenmax, lenmax = len; AppendTo[seq, harmNums[[k]]]], {k, 1, Length[harmNums]}]; seq
Comments