cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335778 The square roots of the perfect squares produced by A335410 in the order in which they appear.

Original entry on oeis.org

12, 12, 24, 36, 60, 84, 84, 132, 96, 372, 144, 408, 168, 180, 732, 468, 348, 1032, 408, 1392, 528, 1704, 612, 1956, 948, 744, 2316, 1092, 816, 1212, 1236, 2724, 912, 2616, 2820, 948, 1092, 1548, 1188, 1200, 1716
Offset: 1

Views

Author

Jeff Brown, Jun 22 2020

Keywords

Examples

			11 is in sequence A335410.  2*(11^2 - 7^2) = 144 = 12^2.  Therefore, 12 is in this sequence.
		

Crossrefs

Cf. A335410.

Programs

  • Mathematica
    Select[IntegerQ][Table[Sqrt[2*Prime[n]^2 - 2*Prime[n-1]^2], {n,17000}]]
  • PARI
    lista(nn) = {my(pp=2, s); forprime (p=3, nn, if (issquare(s=2*(p^2 - pp^2)), print1(sqrtint(s), ", ")); pp = p;);} \\ Michel Marcus, Jun 25 2020

A332615 Primes prime(k) such that 2*(prime(k)^2 - prime(k-1)^2) is a fourth power.

Original entry on oeis.org

83, 2593, 194483, 388963, 31505923, 57289763, 96059603, 99574273, 169869313, 276922883, 395254163, 414720001, 3264481603, 5125781251, 6059221283, 18233242723, 35888419873, 82012500001, 135304020001, 154550410643, 159004011043, 186320859203, 206710354243, 364488705443
Offset: 1

Views

Author

Jeff Brown, Jun 08 2020

Keywords

Comments

This is a subset of A335410.

Examples

			Prime(23)=83. Prime(22)=79. 2*(83^2 - 79^2) = 6^4.
Prime(378)=2593. Prime(377)=2591. 2*(2593^2 - 2591^2) = 12^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[2, 500000], IntegerQ@Sqrt[Sqrt[2(#^2 - NextPrime[#, -1]^2)]]&] (* a modification of Giovanni Resta's program for A335410 *)
  • PARI
    isok(p) = isprime(p) && ispower(2*(p^2-precprime(p-1)^2), 4); \\ Michel Marcus, Jun 08 2020
    
  • PARI
    lista(nn) = {my(pp=2); forprime(p=3, nn, if (ispower(2*(p^2 - pp^2), 4), print1(p, ", ")); pp = p;);} \\ Michel Marcus, Jun 08 2020

Extensions

More terms from Amiram Eldar, Jun 08 2020
More terms from Giovanni Resta, Jun 08 2020

A332333 a(n) = A335778(n)/12.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 7, 11, 8, 31, 12, 34, 14, 15, 61, 39, 29, 86, 34, 116, 44, 142, 51, 163, 79, 62, 193, 91, 68, 101, 103, 227, 76, 218, 235, 79, 91, 129, 99, 100, 143, 147, 149, 107, 310, 473, 343, 171, 125, 394, 187, 401, 191, 142, 203, 147, 418, 460, 156
Offset: 1

Views

Author

Jeff Brown, Jul 06 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Select[IntegerQ][Table[Sqrt[2*Prime[n]^2 - 2*Prime[n-1]^2]/12, {n, 37000}]]
Showing 1-3 of 3 results.