cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jeff Brown

Jeff Brown's wiki page.

Jeff Brown has authored 5 sequences.

A336535 a(n) = (m(n)^2 + 3)*(m(n)^2 + 7)/32, where m(n) = 2*n - 1.

Original entry on oeis.org

1, 6, 28, 91, 231, 496, 946, 1653, 2701, 4186, 6216, 8911, 12403, 16836, 22366, 29161, 37401, 47278, 58996, 72771, 88831, 107416, 128778, 153181, 180901, 212226, 247456, 286903, 330891, 379756, 433846, 493521, 559153, 631126, 709836, 795691, 889111, 990528, 1100386, 1219141, 1347261, 1485226, 1633528, 1792671
Offset: 1

Author

Jeff Brown, Jul 24 2020

Keywords

Comments

For m(n) = 3,5,11, and 181, the perfect numbers (A000396), 6, 28, 496, and 33550336 are produced, respectively. 3,5,11, and 181 are the numbers m(n) such that (m(n)^2+7) is a power of 2. cf A038198.
The unique primitive Pythagorean triple whose inradius T(n) and its long leg and hypotenuse are consecutive natural numbers is (2*T(n)+1, 2*T(n)*(T(n)+1), 2*T(n)*(T(n)+1)+1) and its semiperimeter is (T(n)+1)*(2*T(n)+1) where T(n) = A000217(n). - Miguel-Ángel Pérez García-Ortega, May 16 2025

Examples

			m(2) = 2*2-1 = 3 and (3^2+3)*(3^2+7)/32 = 6, so 6 is in the sequence.
		

References

  • David M. Burton, Elementary Number Theory, McGraw-Hill (2011), 25.

Crossrefs

Programs

Formula

From Stefano Spezia, Jul 25 2020: (Start)
O.g.f.: x*(1 + x + 8*x^2 + x^3 + x^4)/(1 - x)^5.
a(n) = (1 - n + n^2)*(2 - n + n^2)/2.
a(n) = A002061(n)*A014206(n-1)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)
a(n) = (A000217(n-1)+1)*(2*A000217(n-1)+1). - Miguel-Ángel Pérez García-Ortega, May 16 2025

A332333 a(n) = A335778(n)/12.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 7, 11, 8, 31, 12, 34, 14, 15, 61, 39, 29, 86, 34, 116, 44, 142, 51, 163, 79, 62, 193, 91, 68, 101, 103, 227, 76, 218, 235, 79, 91, 129, 99, 100, 143, 147, 149, 107, 310, 473, 343, 171, 125, 394, 187, 401, 191, 142, 203, 147, 418, 460, 156
Offset: 1

Author

Jeff Brown, Jul 06 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Select[IntegerQ][Table[Sqrt[2*Prime[n]^2 - 2*Prime[n-1]^2]/12, {n, 37000}]]

A335778 The square roots of the perfect squares produced by A335410 in the order in which they appear.

Original entry on oeis.org

12, 12, 24, 36, 60, 84, 84, 132, 96, 372, 144, 408, 168, 180, 732, 468, 348, 1032, 408, 1392, 528, 1704, 612, 1956, 948, 744, 2316, 1092, 816, 1212, 1236, 2724, 912, 2616, 2820, 948, 1092, 1548, 1188, 1200, 1716
Offset: 1

Author

Jeff Brown, Jun 22 2020

Keywords

Examples

			11 is in sequence A335410.  2*(11^2 - 7^2) = 144 = 12^2.  Therefore, 12 is in this sequence.
		

Crossrefs

Cf. A335410.

Programs

  • Mathematica
    Select[IntegerQ][Table[Sqrt[2*Prime[n]^2 - 2*Prime[n-1]^2], {n,17000}]]
  • PARI
    lista(nn) = {my(pp=2, s); forprime (p=3, nn, if (issquare(s=2*(p^2 - pp^2)), print1(sqrtint(s), ", ")); pp = p;);} \\ Michel Marcus, Jun 25 2020

A332615 Primes prime(k) such that 2*(prime(k)^2 - prime(k-1)^2) is a fourth power.

Original entry on oeis.org

83, 2593, 194483, 388963, 31505923, 57289763, 96059603, 99574273, 169869313, 276922883, 395254163, 414720001, 3264481603, 5125781251, 6059221283, 18233242723, 35888419873, 82012500001, 135304020001, 154550410643, 159004011043, 186320859203, 206710354243, 364488705443
Offset: 1

Author

Jeff Brown, Jun 08 2020

Keywords

Comments

This is a subset of A335410.

Examples

			Prime(23)=83. Prime(22)=79. 2*(83^2 - 79^2) = 6^4.
Prime(378)=2593. Prime(377)=2591. 2*(2593^2 - 2591^2) = 12^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[2, 500000], IntegerQ@Sqrt[Sqrt[2(#^2 - NextPrime[#, -1]^2)]]&] (* a modification of Giovanni Resta's program for A335410 *)
  • PARI
    isok(p) = isprime(p) && ispower(2*(p^2-precprime(p-1)^2), 4); \\ Michel Marcus, Jun 08 2020
    
  • PARI
    lista(nn) = {my(pp=2); forprime(p=3, nn, if (ispower(2*(p^2 - pp^2), 4), print1(p, ", ")); pp = p;);} \\ Michel Marcus, Jun 08 2020

Extensions

More terms from Amiram Eldar, Jun 08 2020
More terms from Giovanni Resta, Jun 08 2020

A335410 Primes prime(k) such that 2*(prime(k)^2 - prime(k-1)^2) is a perfect square.

Original entry on oeis.org

11, 19, 73, 83, 227, 443, 883, 1091, 1153, 1931, 2593, 2609, 3529, 4051, 7451, 13691, 15139, 16649, 20809, 26921, 34849, 45377, 46819, 53147, 56171, 69193, 74507, 74531, 83233, 91811, 95483, 103067, 103969, 106937, 110459, 112339, 149059, 149771, 176419, 180001
Offset: 1

Author

Jeff Brown, Jun 06 2020

Keywords

Comments

2*(prime(n)^2 - prime(n-1)^2) represents the integer coefficient of the difference in areas between the two circles passing through the origin with centers located at (prime(n), prime(n)) and (prime(n-1), prime(n-1)).
Among the first 200000 primes 2593 and 2609 are the only consecutive primes in this sequence.

Examples

			Prime(5) = 11, prime(4) = 7, 2*(11^2 - 7^2) = 12^2, so 11 is in the sequence.
Prime(559) = 4051, prime(558) = 4049, 2*(4051^2 - 4049^2) = 180^2, so 4051 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[2, 17000], IntegerQ@ Sqrt[2 (#^2 - NextPrime[#, -1]^2)] &] (* Giovanni Resta, Jun 06 2020 *)
  • PARI
    lista(nn) = {my(pp=2); forprime (p=3, nn, if (issquare(2*(p^2 - pp^2)), print1(p, ", ")); pp = p;);} \\ Michel Marcus, Jun 25 2020

Extensions

More terms from Giovanni Resta, Jun 06 2020